摘要
通过在弹性梁的结构总势能泛函中引入参数的模糊性,建立了模糊变分原理,进而导出了模糊里兹 法和模糊有限元法的计算格式,分析了具有模糊参数的弹性梁在模糊荷载下的响应特性.算例表明,模糊 有限元法和模糊里兹法具有较高的计算精度,且具有模糊特性的薄板在模糊荷载下的响应,其相对幅值与 确定性边界的支撑条件无关.
The fuzziness of the corresponding quantities is consistently incorporated into the functional of the total potential energy for the elastic beam. The fuzzy Ritz method and fuzzy finite element method an developed on the basis of the fuzzy variational principle ior a bending beam with fuzzy characteristic parameters . The examples show that the fuzzy finite element method and the fuzzy Ritz method may achieve high accuracy, and the deterministic boundary conditions do not affect the relative amplitude of the fuzzy beam' s deflection.
出处
《福州大学学报(自然科学版)》
CAS
CSCD
北大核心
2005年第z1期282-287,共6页
Journal of Fuzhou University(Natural Science Edition)
基金
国家自然科学基金资助项目(50369001)留学回国基金资助项目(教外司留[2003]4号)广西省自然科学基金资助项目(0447005)
关键词
变分原理
峰型模糊数
模糊里兹法
模糊有限元法
variational principle
peaky fuzzy number
fuzzy Ritz method
fuzzy finite element method