期刊文献+

可见光图像背景灰度特性:双高斯混合分布模型 被引量:1

Visible Image Background Clutter Intensity Characteristic: Two univariate Gauss Mixture densities Model
下载PDF
导出
摘要 针对可见光图像背景起伏的灰度分布特性,提出了双高斯混合分布模型(Two univariate Gauss Mixturedensities Model,简记为TGMM)的描述方法.对实测可见光背景图像分析表明:图像灰度仅仅占有少数的灰度级别,并且绝大多数都处于低灰度区;图像灰度集中在μ±2σ以内,并且具有"双峰"特征;灰度直方图上左边的峰对应着天空、星云等背景部分,右边的峰对应着众多的高亮恒星和幅度较大的系统噪声.进一步的,从理论上说明了"双峰"的形成原因,并且提出了TGMM描述方法,给出了基于EM算法的模型参数估计方法.数值结果证实了TGMM的合理性.
出处 《信号处理》 CSCD 北大核心 2005年第z1期231-234,共4页 Journal of Signal Processing
基金 国家"863"高技术项目资助
  • 相关文献

参考文献4

  • 1[1]Milan S, Vaclav H, Roger B . Image processing,analysis, and Machine vision 2nd [M].Thomson Learning and PT Press, 1999
  • 2[2]Dimitris G..M Vinay K.I and Stephen M.K. Statistical and adaptive signal processing[M]. Beijing:Publishing House of Electronics Industry, 2003
  • 3[3]Redner and Walker. Mixtrue densities, maximum likelihood and the EM algorithm[J]. SIAM Review, vol 26(2): 195-239, 1984
  • 4田光明,陈光(?).基于熵调整模糊c-均值聚类的时频能量混合模型[J].信号处理,2005,21(1):1-6. 被引量:3

二级参考文献20

  • 1[美]L科恩著 白居宪译.时-频分析:理论与应用[M].西安:西安交通大学出版社,1998..
  • 2Baraniuk R G, Jones D L. Signal-dependent timefrequency analysis using a radially Gaussian kernel [J].Signal Processing, 1983, 32: 263-284.
  • 3Baraniuk R G, Jones D L. A signal-dependent time-frequency representation: optimal kernel design [J].IEEE Transactions on. Signal processing, 1993, 41(4):1589-1601.
  • 4Jones D L, Baraniuk R G. A simple scheme for adapting time-frequency representations [J]. IEEE Transactions onSignal processing, 1994, 42(12): 3530-3535.
  • 5Jones D L, Parks T W. A high-resolution data-adaptive time-frequency representation [J]. IEEE Transactions on Acoustics, Speech, Signal Processing, 1990, 38(12):2127-2135.
  • 6Qian S, Chen D. Decomposition of the Wigner distribution and time-frequency distribution series [J]. IEEE Transactions on Signal Processing, 1994, 42(10): 2836-2842.
  • 7Auger E Flandrin E Improving the readability of time-frequency and time-scale representations by the reassignment method [J]. IEEE Transactions on Signal Processing, 1995, 43(5): 1068-1089.
  • 8Ristic B, Boashash B. Kernel design for time-frequency signal analysis using the Randon transform. IEEE Transactions on Signal Processing, 1993, 41(5): 1996-2008.
  • 9Coates M J, Fitzgerald W J. Regionally optimized time-frequency distributions using mixture models [J].IEEE Transactions on Signal Processing, 1999, 77(1):247-260.
  • 10Redner R A, Walker H E Mixture densities, maximum likelihood and EM algorithm [J]. SIAM Review, 1984,26(s): 195-239.

共引文献2

同被引文献2

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部