摘要
用共轭梯度算法改进BP神经网络,使得网络的性能得到改善,缩短了网络训练时间,提高了预报精度,并将其应用于电力系统负荷预报,通过对东北电网实测数据的仿真计算表明,该方法是可行的。
Conjugate gradient algorithm is used to improve BP neural network, that can improve performance ofnetwork, shorten training time, enhance forecasting precision. The improved network is used in power load fore-casting of northeast of China, the calculation results show that this approach is feasible.
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2005年第z1期669-670,672,共3页
Chinese Journal of Scientific Instrument
关键词
负荷预报
BP神经网络
共轭梯度法
Load forecast BP neural network Conjugate gradient algorithm