期刊文献+

粒子滤波在被动定位跟踪中的运用 被引量:9

Application of Particle Filter to Target Tracking of Passive Location
下载PDF
导出
摘要 被动定位系统是一个仅有角测量的系统,对于目标距离是不可观测的。通过对角度的测量来估计目标的运动状态。首先给出定位系统的系统和测试模型。此类跟踪问题本质上是一个非线性滤波估计问题,其目的就是从被污染的测试数据中提取好的信息。描述了基于贝叶斯理论的目标跟踪粒子滤波算法,该算法可应用于非线性、非高斯系统中。并给出了一种改进的方法来遏制粒子退化和贫乏问题,最后对算法进行了检验。 The system of passive location uses bearing-only measurement to estimate the states of target includ-ing velocity,position and acceleration.First,the mathematical model of the passive location is build.The basicproblem of the target tracking that is something about nonlinear filter is to obtain clear message from data cor-rupted by noise.It introduces particle filter based on Bayesian theorem,which can be applied in the systems ofnon-linear and non-Gaussian.At last,a method is developed to reject the degeneracy and impoverishment of parti-cle and a simulation is done to test the method.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2005年第z1期211-214,共4页 Chinese Journal of Scientific Instrument
关键词 贝叶斯理论 被动定位 非线性 粒子滤波 Bayesian theorem Passive location Non-linear Particle filter
  • 相关文献

参考文献5

  • 1[1]Dikic G,Kovacevic B. Target tracking with passive IR sensors. Telecommunications in Modern Satellite ,Cable and Broadcasting Service, 2001.
  • 2[2]Marcelo G. S. Bruno, Anton Pavlov. Improv ed particle filters for ballistic target tracking. IEEE Transactions on Signal Processing, 2004.
  • 3[3]Simon Maskell, Neil Gordon. A tutorial on particle filters for on-linear nonlinear/non-Gaussian Bayesian tracking. IEEE, 2001.
  • 4[4]Katsuji Uosaki, Toshiharu Hatanaka. Evolution strategies based particle filters for state and parameter estimation of nonlinear models. CEC2004 Evolutionary Computation, 2004.
  • 5[5]Rickard Karlsson,Fredrik Gustafsson. Range estimation using angle-only target tracking with particle filters.Priceedings of the American Control Conference Arlington,June25-27,2001.

同被引文献84

引证文献9

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部