期刊文献+

基于稀疏贝叶斯学习的相关向量跟踪

The Sparse Bayesian Learning Based Revelance Vector Tracking
下载PDF
导出
摘要 结合稀疏贝叶斯学习方法和支持向量跟踪(SVT)原理,提出了相关向量跟踪(RVT)。由于跟踪系统事先学习到了目标的“知识”,故匹配发生在候选图像块与先验知识之间,而不必考虑模板更新。相关向量有比支持向量更稀疏的性能,所以相关向量跟踪比支持向量跟踪有更快的帧处理速度。另外,为了解决由于运动导致目标尺寸发生变化的匹配跟踪问题,采用了灰度真方图特征,引入了运动预测和变尺寸采样的方法。上述性能和方法在实验中得到了证实。 Combining sparse Bayesian learning with the principle of the support vector tracking(SVT),the relevance vector tracking (RVT) is presented.Because of the matching between the candidated image patch and the prior knowledge,it need not the template updating.And the process time for each frame of the RVT's is faster than the SVT's by reason of the more sparse property of the former.In addition,the gray histogram character is adopted and the motion prediction and the size-alterable sampling methods are used to solve such a matching tracking problem that the size of the object is updated consecutively due to the motion.The above property and the methods have been confirmed in the experiment.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2005年第z2期387-391,共5页 Chinese Journal of Scientific Instrument
关键词 稀疏贝叶斯学习 相关向量跟踪 匹配跟踪 变尺寸采样 灰度直方图 Sparse Bayesian learning Relevance vector tracking Maching tracking Size-alterable sampling Gray histogram
  • 相关文献

参考文献9

  • 1[1]Shai Avidan. Support vector tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004,26 (8).
  • 2[2]G. Hager,P. Belhumeur. Efficient region tracking with parametric models of geometry and illuminatio. IEEE Trans. Pattern Analysis and Intelligence, 1998,20 (10):1025~1039.
  • 3任仙怡,廖云涛,张桂林,张天序.一种新的相关跟踪方法研究[J].中国图象图形学报(A辑),2002,7(6):553-557. 被引量:56
  • 4[4]Michael J. Black,Allan D. Jepson. Eigen tracking : robust matching and tracking of articulated objects using a view-based representation. European Conference on Computer Vision ,Cambridge, UK, April 1996.
  • 5[5]I. Matthews,T. Ishikawa,S. Baker. The template update problem. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004,26 (6): 810~ 815.
  • 6[6]M. Tipping. Sparse Baysian learning and the relevance vector machine. Journal of Machine Learning Research,1,2001: 211 ~ 244.
  • 7[8]M. Tipping. The relevance vector machine. Advances in Neural Information Processing System, 2000,12: 652 ~658.
  • 8[9]D.J.C. MacKay. The evidence framework applied to classification networks. Neural Computation, 1992, 4(5):720~736.
  • 9[10]Dorin Comaniciu, Visvanathan Ramesh, Peter Meer.Kernal-based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25 (5).

二级参考文献1

  • 1杨皓筠.相关跟踪中若干关键问题的研究:硕士学位论文[M].武汉:华中科技大学图象识别与人工智能研究所,2000,4..

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部