期刊文献+

麦汁过滤过程的优化控制 被引量:4

The Optimization Control for Wort Filtration Process
下载PDF
导出
摘要 麦汁过滤是啤酒糖化生产过程的主要环节之一。对麦汁过滤过程进行机理分析,采用极小值原理对带约束条件的过滤时间最优化问题进行求解,得到了优化的麦汁过滤方案;在该方案的基础上使用关联规则挖掘方法和专家控制策略,实现了整个麦汁过滤过程的自动控制,缩短了过滤时间,取得了良好的效益。 Wort filtration is the key process of brewery saccharification. The mechanism of wort filitration was analyzed, principle of the minimum was adopted to slove the optimization of filtration time with constraint conditions, then an optimized wort filtration solution was obtained. Using association rule generation and expert control strategy, wort filtration process has realized automatic control based on the optimized filtration solution. Filtration time was shortened and the yield of wort was improved.
作者 侯迪波
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2005年第z2期721-724,共4页 Chinese Journal of Scientific Instrument
关键词 麦汁过滤 啤酒糖化 极小值原理 过程优化 Wort filtration Brewery saccharification Principle of the minimum Process optimization
  • 相关文献

参考文献4

二级参考文献19

  • 1Agrawal R, ImielinSki T,Swami A. Mining association rules be tween sets of items in large database . Proceeding of the ACM SIGMOD International Conference On Management of Data, 1993 (2) :207~216
  • 2Bayardo R J. Efficiently mining long patterns from database. In SIGMOD '98,85~93
  • 3Han J, Pei J, and Yin Y. Mining partial periodicity using frequent pattern tree. In CS Tech. Rep, 99 ~ 100, Simon Fraser University, July 1999
  • 4Vikram P, Haritsas J R. Quantify the utility of the past in mining large database . Information Systems , 2000,25 (5): 323 ~ 343
  • 5Cheung D, Han J, Ng V,Wong C. Maintenance of discovered as sociation rules in large databases: an incremental updating technique. In: Proc. of the 12th Intl. Conf. on Data Engineering (ICDE), New Orleans ,Louisiana,IEEE Computer Society, 1996. 106~114
  • 6Cheung D, LEE S, Kao B. A general incremental technique for maintaining discovered association rules. In: Proceedings of the 5th Intl. Conf. on Database Systems for Advanced Applications (DASFAA), Melbourne, Australia, World Scientific, 1997. 185 ~ 194
  • 7Feldman R, Aumann Y, Amir A,Mannila H. Efficient algorithms for discovering frequent sets in incremental databases. In: Proc of SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, Tucson, Arizona,1997
  • 8Pudi V Haritsa J R. Quantifying the utility of the past in mining large database. Information Systems , 2000,25(5):323~343
  • 9Han J, et al. Mining Frequent Patterns without Candidate Gener ation,(Slide). In:Proc. 2000 ACM-SIGMOD Int. Conf. On Man agement of Data , Dallas. Tx, 2000 (5)
  • 10Wu M,Expert Syst Appl,1999年,16卷,1期,135页

共引文献10

同被引文献28

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部