期刊文献+

库所组合有色网-一种新型的有色网 被引量:2

Place-Combined Coloured Petri Net
下载PDF
导出
摘要 为了解决用Petri网描述复杂系统时出现的"节点爆炸"问题,本文提出了四种特殊的弧:约束弧、柔性弧、组合弧和因果弧.库所组合有色网就是在有色网的基础上添加这四种特殊的弧得到的,这种网系统并没有增加描述能力,但在描述具有组合效果的系统时具有强大的先天优势.本文通过为电梯控制系统建模示例了这四种弧为简化模型带来的便捷之处.
出处 《系统仿真学报》 CAS CSCD 北大核心 2005年第z1期30-37,43,共9页 Journal of System Simulation
基金 国家自然科学基金 (60173002) 973项目 (2002CB312004)
  • 相关文献

参考文献7

  • 1[2]T. Basten, M. Voorhoeve. An Algebraic Semantics for Hierarchical P/T Nets (extended abstract). In G. DeMichelis and M. Diaz, editors, Application and Theory of Petri Nets 1995, 16th. International Conference, Proceedings, volume 935 of Lecture Notes in Computer Science, pages 45-65, Torino, Italy, June 1995 [J] Springer-Verlag, Berlin, Germany, 1995.
  • 2[3]Oliver Biberstein. CO-OPN/2: An Object-Oriented Formalism for the Specification of Concurrent Systems. [D]. PhD thesis, University of Geneva, April 1997.
  • 3[4]Lakos, C. From Coloured Petri Nets to Object Petri Nets [C]. Conference on the Application and Theory of Petri Nets, Torino, Italy, 1995.
  • 4[5]S Christensen, N Damgaard. Hansen: Coloured Petri nets extended with place capacities, test arcs and inhibitor arcs [S]. Daimi PB 398, ISSN 0105 8517, May 1992. Available as: Daimi PB 398, ISSN 0105 8517.
  • 5[6]C. Girault and Rüdiger Valk. Petri Nets for Systems Engineering - A Guide to Modeling, Verification, and Applications [M]. Springer- Verlag, 2003.
  • 6[7]K. Mani Chandy, Jayadev Misra. Parallel Program Design: A Foundation [M]. Boston: Addison- Wesley, 1989.
  • 7[8]Charles Lakos. Object oriented modelling with object Petri nets [A]. In Gul Agha, Fiorella de Cindio, and Grzegorz Rozenberg, editors, Concurrent Object-Oriented Programming and Petri Nets [Z]. 2001.

同被引文献31

  • 1蒋屹新,林闯,曲扬,尹浩.基于Petri网的模型检测研究[J].软件学报,2004,15(9):1265-1276. 被引量:20
  • 2夏传良,焦莉,陆维明.Petri网精细化操作及其在系统设计中的应用[J].软件学报,2006,17(1):11-19. 被引量:16
  • 3卢燕俊,戴华平.城市交通网络的混杂Petri网建模[J].浙江大学学报(工学版),2007,41(6):930-934. 被引量:11
  • 4Sren Christensen. Coloured Petri Nets Extended with Place Capacities, Test Arcs and Inhibitor Arcs [J]. Application and Theory of Petri Nets 1993, LNCS (S0302-9743), 1993, 691: 186-205.
  • 5Amain Zimmermann. Stochastic Discrete Event Systems [M]. Berlin, Heidelberg, Germany: Springer, 2008.
  • 6Tuomas Aura, Johan Lilius. Time processes for time Petri nets [J]. Application and Theory of Petri Nets 1997, LNCS (S0302-9743), 1997, 1248: 136-155.
  • 7Min Wan, Gianfranco Ciardo. Symbolic Reachability Analysis of Integer Timed Petri Nets [J]. SOFSEM 2009: Theory and Practice of Computer Science, LNCS (S0302-9743), 2009, 5404: 595-608.
  • 8Morgan Magnin, Didier Lime, Olivier (H.) Roux. Symbolic State Space of Stopwatch Petri Nets with Discrete-Time Semantics (Theory Paper) [J]. Petri Nets 2008, LNCS (S0302-9743), 2008, 5062:307-326.
  • 9Rene David, Hassane Alia. Discrete, Continuous, and Hybrid Petri Nets [M]. Berlin Heidelberg, Germany: Springer, 2005.
  • 10Rene David, Hassane Alla. On Hybrid Petri Nets [J]. Discrete Event Dynamic System: Theory and Application (S0924-6703), 2001, 11(1): 9-40.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部