期刊文献+

一个求解箱约束二次规划的非内点预估校正算法

A Non-interior Predictor-corrector Path Following Method for Convex Quadratic Programming Problems with Bound Constraints
下载PDF
导出
摘要 利用Chen-Harker-Kanzow-Smale光滑技术,给出了一个求解箱约束二次规划的预估校正的算法,它是Xu's方程的进一步研究,它的思想是将问题的K-T条件转化成一组光滑的等式,再用预估校正方法求解.同现存的算法相比,该算法具有较快的收敛速度,且所需的条件相对较弱.本文改进了该领域内的一些最新结果. In this paper,a predictor-corrctor method has been presented based on the Chen-Harker-Kanzow-Smale smoothing technique for convex quadratic programming problems with bound constraints.It is the further study of Xu s method.The main idea is to convert the K-T condition of the problem to a system of smooth equation,then we solve it by predictor-corrector method.Under mild condition,global convergent and local quadratic convergence is obtained.It has a relative fast convergence compared to the methods availabl...
作者 杨威 刘三阳
出处 《应用数学》 CSCD 北大核心 2005年第S1期62-67,共6页 Mathematica Applicata
关键词 凸二次规划 箱约束 预估校正方法 Convex quadratic programming problem Bound constraints Predictor-corrector method
  • 相关文献

参考文献4

  • 1Song Xu. A Non-Interior Path Following Method for Convex Quadratic Programming Problems with Bound Constraints[J] 2004,Computational Optimization and Applications(3):285~303
  • 2Jim Burke,Song Xu. A non–interior predictor–corrector path following algorithm for the monotone linear complementarity problem[J] 2000,Mathematical Programming(1):113~130
  • 3Y. Lin,C. W. Cryer. An alternating direction implicit algorithm for the solution of linear complementarity problems arising from free boundary problems[J] 1985,Applied Mathematics & Optimization(1):1~17
  • 4Per L?tstedt. Solving the minimal least squares problem subject to bounds on the variables[J] 1984,BIT(2):205~224

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部