期刊文献+

对于局部有界函数的积分型Szász-Bézier算子的逼近估计(英文) 被引量:1

Approximation of Integerated Szász-Bézier Operators for Local Bounded Functions
下载PDF
导出
摘要 引入一种积分型的 Szász- Bézier算子 ,并研究其逼近性质 。 In this paper the approximation properties of integerated Szász Bézier operators n,α are studied. The rate of convergence of pointwise approximation for local bounded functions are obtained.
机构地区 厦门大学数学系
出处 《数学研究》 CSCD 2004年第1期29-34,共6页 Journal of Mathematical Study
基金 Project supported by NSFC and Fujian Provincial Science Foundation A0 2 1 0 0 0 4 ofChina.
关键词 逼近度 Szász-Bézier算子 局部有界函数 LEBESGUE-STIELTJES积分 Rate of approximation Szász-Bézier operators local bounded functions Lebesgue-Stieltjes integration
  • 相关文献

参考文献5

  • 1[1]Zeng X M. On the rate of convergence of the generalized Szász type operators for bounded variation functions. J. Math. Anal. Appl., 1998, 266:309-325.
  • 2[2]Cheng F. On the rate of convergence of Bernstein Polynomials of functions of bounded variation. J. Approx. Theory, 1983, 39:259-274.
  • 3[3]Bojanic R, Vuillemier M. On the rate of convergences of Fourier-Legendre seriès of functions bounds variation. J. Approx. Theory, 1981, 31:67-79.
  • 4[4]Zeng X M, Zhao J N. Exact bounds for some basis functions of approximation operators. J. Inequal. Appl., 2001, 6(5):563-575.
  • 5[5]Shirgagev A. "Probability". Springer-Verlag, New York, 1984.

同被引文献7

  • 1王绍钦,王平华.修正的Baskakov型算子的点态逼近性质[J].泉州师范学院学报,2004,22(6):23-27. 被引量:2
  • 2王平华.Bernstein-Bézier算子的点态逼近阶的估计[J].成都大学学报(自然科学版),2005,24(4):250-252. 被引量:3
  • 3B.M.佐洛塔廖夫.独立随机变量和的现代理论[M].陈宗询译.福州:福建科学技术出版社,1996.
  • 4Zeng X M.On the rate of convergence of the generalized Szász type operators for bounded variation functions[J].J.Math.Anal.Appl.1998,(266):309-325.
  • 5Cheng F.On the rate of convergence of Bernstein Polynomials of functions of bounded variation[J].J.Approx.Theory,1983,(39):259-274.
  • 6V Gupta,R P Pant.Rate of convergence for the modified Szasz-Mirakyan operators on functions of bounded variation[J].J.Math.Anal Appl..1999,(233):476-483.
  • 7Zeng X M,Chen W Z.On the rate of convergence of the generalized Durrmeyer type operators for functions of bounded variation[J].J.Approx.Theory.2000,(102):1-12.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部