摘要
费曼路径积分的变分方法是计算束缚极化子基态能的最有效方法。文章给出了抛物线型量子线中束缚极化子的哈密顿量 ,运用费曼路径积分的变分方法统一推导出抛物线型量子线约束势中杂质库仑束缚势下极化子的基态能 ,讨论了量子阱的一些特殊情况 :有、无杂质库仑束缚势的量子点和有、无杂质库仑束缚势的量子阱束缚势的量子阱 。
The Feynman path-integral variational theory is the best way to compute the ground-state energy of bound polarons. The expression of the Frohlich Hamiltonian of bound polarons in parabolic potential is derived.Based on the Feynman path-integral variational theory, the expression of the ground-state energy of bound polarons in parabolic potential with the arbitrary electron-phonon coupling constant is derived in a unified way. The unified form of the ground-state energy are discussed in view of the following aspects: polarons and bound polarons in quantum dot, polarons and bound polarons in quantum well,and free polarons.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
2004年第7期814-818,共5页
Journal of Hefei University of Technology:Natural Science
关键词
极化子
费曼路径积分
基态能
polaron
feynman path-integral
ground-state energy