摘要
The negative ion implantation technique was applied to modify polymer surfaces of culture dishes for neuronal cells, PC12h. The silver negative ion (Ag-)-implantation was carried out at an ion energy of 20 keV and a dose of 3 × 1015 ions/cm2 with non-treated polystyrene (NTPS), tissue culture polystyrene (TCPS), and collagen-coated TCPS-Iwaki (CCPS). Ag--implanted surfaces of Ag/NTPS, Ag/TCPS, and Ag/CCPS were studied with respect to contact angle and/or chemical composition. The numerical values of contact angles on Ag/NTPS and Ag/TCPS were similar within experimental error, indicating the resemblance in their hydrophobicity and hydrophilicity. The PC12h cells, however, were attached only to the Ag--implanted region of NTPS, but not to the non-implanted NTPS region. Moreover, the neurite outgrowth was also observed to extend specifically along the Ag--implanted region of NTPS but not on the non-implanted NTPS region, although neurites extended towards all directions on collagen-coated TCPS as a control surface. There was no remarkable difference in neurite outgrowth among Ag--implanted regions of TCPS and CCPS. Thus Ag/NTPS region was affirmed to promote highly selective attachment, growth, and differentiation of PC12h cells, although its mechanism is still unknown.
The negative ion implantation technique was applied to modify polymer surfaces of culture dishes for neuronal cells, PC12h. The silver negative ion (Ag-)-implantation was carried out at an ion energy of 20 keV and a dose of 3 × 1015 ions/cm2 with non-treated polystyrene (NTPS), tissue culture polystyrene (TCPS), and collagen-coated TCPS-Iwaki (CCPS). Ag--implanted surfaces of Ag/NTPS, Ag/TCPS, and Ag/CCPS were studied with respect to contact angle and/or chemical composition. The numerical values of contact angles on Ag/NTPS and Ag/TCPS were similar within experimental error, indicating the resemblance in their hydrophobicity and hydrophilicity. The PC12h cells, however, were attached only to the Ag--implanted region of NTPS, but not to the non-implanted NTPS region. Moreover, the neurite outgrowth was also observed to extend specifically along the Ag--implanted region of NTPS but not on the non-implanted NTPS region, although neurites extended towards all directions on collagen-coated TCPS as a control surface. There was no remarkable difference in neurite outgrowth among Ag--implanted regions of TCPS and CCPS. Thus Ag/NTPS region was affirmed to promote highly selective attachment, growth, and differentiation of PC12h cells, although its mechanism is still unknown.
基金
This work was supported by the Research for the Future Program of the Japan Society for the Promotion of Science (JSPS-RFTF98I00201).