摘要
给出了明显与时间有关量子振动系统的哈密顿量的普遍形式。由量子湮灭算符和量子产生算符,构造了一组满足特定对易关系的量子算符,并由这组算符构造一个不变量算符,建立算符代数理论,由此得到量子振动系统的能级和波函数的具体表示。以一维量子阻尼振动系统为例,对该量子系统的量子力学问题进行了讨论。
The ordinang form of Hamiltonian in the system of explicit time-dependence is given. A series quantum operators meeting the special commutation rejectin are constructed through the annihilation operators and the creation operators, then an invariant operator is obtained. The theory of operator algebra is established,so that the particular expression for the enengy level and wave function of the quantum oscillatory system is obtained. As a special example, the quantum theories for the one-dimensional quantum damped oscillatory system are discussed.
出处
《中国粉体技术》
CAS
2004年第1期1-4,共4页
China Powder Science and Technology
关键词
哈密顿量
量子算符
不变量
量子论
Hamiitonian
quantum operator
invariant
quantum theory