3[3]Wen F A , Liang C G. Displacement analysis of the 6-6 stewart platform mechanisms. Mechanism and Machine Theory, 1994, 29(4): 547~557
4[4]Sreenivasan S V, Waldron K J. Closed-form direct displacement analysis of a 6-6 stewart platform.Mechanism and Machine Theory, 1994, 29(6) :855~864
6[6]Xu L J, Tian G Y, Duan Y.Inverse kinematic analysis for triple-octahedron variable- geometry truss manipulators. Journal of Mechanical Engineering Science, 2001, 215(2):247~251
4 Arun V, et al. Enumeration andAnalysis of Variable Geometry Truss Manipulators[A]. Proc. on 21st ASME MechanismsConference[C],Chicago,1990
5 Jain S, et al. Forward and Inverse Kinematic Solution of Variable Geometry TrussRobot Based on An N-cell Tetrahedron-Tetrahedron Truss[J]. Trans. of ASME, ofMechanical Design, 1990,112(1):16~22
6 Reinholtz C F, et al. Design and Analysis of Variable Geometry Truss Robots[A].Proc. of Tenth Applied Mechanisms Conference[C],Vol.1 Section 3c,New Orleans LA,1987
7 Griffis M, et al. A Forward Displacement Analysis of a Class of Stewart Platform[J].J. of Robotic System, 1989,6(6):703~720
8 Arun V, et al. Application of Continuation Techniques to Variable Geometry Truss[J].Trans,of ASME J. of Mechanical Design, 1992,114(3)
9 Yao Jin, et al. Forward Displacement Analysis of the Decahedral VariableGeometry Truss Manipulator[J]. Robotics and Autonomous systems,1995,15:173~178
10 Xu L J, et al. A Direct Displacement Solution to the Dodecahedron VariableGeometry Truss Manipulator[A]. Proc of 1996 ASME Design automation Conference[C],Irvine,California,1996