期刊文献+

求解守恒律及对流扩散方程的中心迎风方法 被引量:1

Central-Upwind Scheme for Conservation Laws and Convection-Diffusion Equations
下载PDF
导出
摘要 提出了一种新的求解双曲守恒律方程(组)的四阶半离散中心迎风差分方法。空间导数项的离散采用四阶CWENO的构造方法,使所得到的新方法在提高精度的同时,具有更高的分辨率。使用该方法产生的数值粘性同阶要比交错的中心格式小,而且由于数值粘性与时间步长无关,从而时间步长可根据稳定性需要尽可能的小。 In this paper, we present a new semi-discrete central-upwind scheme for hyperbolic system of conservation laws. By using the fourth-order CWENO reconstruction, the new scheme has properties of higher order accuracy and high resolution for discontinuities. Because the new scheme has less dissipation, which is independent of timesteps than the staggered central scheme, it can be efficiently used with timesteps as small as the requirement of the numerical stability.
出处 《航空计算技术》 2004年第3期23-26,共4页 Aeronautical Computing Technique
关键词 双曲守恒律 中心迎风 CWENO hyperbolic conservation central-upwind CWENO
  • 相关文献

参考文献5

  • 1[1]D Levy, G Puppo and G Russo. Central WENO schemes for hyperbolic systems of conversation laws [ J ]. Appl. Numer.Math. Anal. 1999, 33, pp. 547 - 571.
  • 2[2]A Kurganov and E Tadmor. New high -resolution central schemes for nonlinear conservation laws and convectiondiffusion equations[J]. J. Comput. Phys. 2000, 160, pp.241 - 282.
  • 3[3]A Kurganov and D Levy. A third - order semi - discrete central scheme for conservation laws and convection -diffusion equations[J]. SIAM J. Sci, Comput. 2000, 22, pp. 1461 -1488.
  • 4[4]A Kurganov ,S Nolle and G Petrova. Semi - discrete central- upwind scheme for hyperbolic conservation laws and Hamilton - Jacobi equations [ J ]. SIAM J. Sci. Comput. 2001,23, pp. 707 - 740.
  • 5[5]S Gottlieb, C - W Shu and E Tadmor. Strong stability - preserving high order time discretization methods[ J]. SIAM Review. 2001,43 ,pp89 - 112.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部