期刊文献+

梯度材料电场辅助自蔓延燃烧合成机理研究 被引量:1

Mechanistic investigation of electric field-activated self-propagating combustion synthesis of gradient materials
下载PDF
导出
摘要 采用电场辅助自蔓延高温合成技术制备了SiC-TiC-xNi梯度功能材料.利用电场的焦耳加热效应,使那些通过单一自蔓延高温合成(SHS)技术难以进行或不能进行的反应物的制备得以实现;电场加快离子的扩散与迁移速度,减少晶体缺陷,使反应更加充分.实验发现,随着电场强度的增大,反应体系的温度升高、电流值变大.
机构地区 太原理工大学
出处 《功能材料》 EI CAS CSCD 北大核心 2004年第z1期3066-3068,3071,共4页 Journal of Functional Materials
基金 国家自然科学基金资助项目(50375105) 山西省自然科学基金资助项目(20031051)
  • 相关文献

参考文献1

二级参考文献7

  • 1[1]A Mortensen and S. Suresh, "Functionally Graded Metals and Metal-Ceramic Composites: Part 1 Processing," Int. Mat. Rev. 40 [6] 23-65 (1995).
  • 2[2]S. Suresh and A. Mortensen, "Functionally Graded Metals and Metal-Ceramic Composites: Part 2Thermomechanical Behaviour," Int. Mat. Rev. 42 [3]85-116 (1997).
  • 3[3]Neubrand and J. Rodel, "Gradient Materials: An Overview of a Novel Concept," Z. Metallkd. 88 [5]358-71 (1997).
  • 4[4]T. Hirai, Functional Gradient Materials, Materials Science & Technology, Ed. By R. W. Cahn, P.Haasen, E. J. Kramer, Vol. 17B: Processing of Ceramics, Vol. Ed: R. J. Brook, VCH Verlagsgesellschaft mbH, Weiheim, 1996
  • 5[5]W. Powers, "The Electrophoretic Forming of BetaAlumina Ceramics," J. Electrochem Soc. 122 [4] 490-99(1975).
  • 6[6]Sarkar, X. Huang and P. Nicholson, Zirconia/Alumina Functionally Gradiented Composites by Electrophoretic Deposition Techniques," J. Am. Ceram. Soc. 76[4]1055-56 (1993).
  • 7[7]C. Zhao, J. Vleugels, L. Vandeperre, B. Basu and O.Van Der Biest, Y-TZP/Ce-TZP Functionally Graded Composite, J. Mat. Sci. Lett. 17 [17] 1453-55 (1998).

共引文献19

同被引文献45

  • 1杨坤,杨筠,林志明,李江涛.机械活化燃烧合成SiC粉体的研究[J].无机材料学报,2007,22(2):263-267. 被引量:8
  • 2VARMA A, LEBRAT J-P. Combustion Synthesis of Advanced Materials [J]. Chemical Engineering Sci- ence, 1992, 47(9): 2179 -2194.
  • 3MUNIR Z A, ANSELMI-TAMBURINI U. Self-Prop- agating Exothermic Reactions: The Synthesis of High- Temperature Materials by Combustion [J]. Materials Science Reports, 1989, 3(7): 277-365.
  • 4LOCCI A, LICHERI R, ORRU R, et aI. Low Gravi- ty Combustion Synthesis: Theoretical Analysis of Ex- perimental Evidences [J]. AIChE Journal, 2006, 52 (11) : 3744-3761.
  • 5MUKASYAN A, LAU C, VARMA A. Influence of Gravity on Combustion Synthesis of Advanced Materi- als [J]. AIAA journal, 2005, 43(2): 225-245.
  • 6SYTSCHEV A, MERZHANOV A. SHS in Micro- gravity: Optimistic Insight Into the Future [J]. Inter- national Journal of Self-Propagating High-Temperature Synthesis, 2009, 18(3): 200-206.
  • 7MERZHANOV A, ROGACHEV A, SYCHEV A. Self-Propagating High-Temperature Synthesis: First Space Experiments Proceedings of the Doklady Physi- cal Chemistry C/C of Doklady-Akademiia Nauk, F, 1998 [C]. Plenum Publishing Corporation.
  • 8ORR R, LICHERI R, LOCCI A M, et al. Self-Propa- gating Combustion Synthesis of Intermetallic Matrix Composites in the ISS [J]. Microgravity Science and Technology, 2007, 19(5-6): 85-89.
  • 9ZANOTTI C, GIULIANI P, MAGLIA F. Combus- tion Synthesis of Co-A1 and Ni-A1 Systems Under Re- duced Gravity [J]. Intermetallics, 2006, 14(2): 213- 219.
  • 10LIU G, LI J. High-Gravity Combustion Synthesis: A Fast and Furnace-Free way for Preparing Bulk Ceramic Materials [J]. Journal of Asian Ceramic Societies, 2013, 1(2): 134-142.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部