期刊文献+

粒子群优化k均值的混合聚类算法研究 被引量:7

The Research of a Hybrid Clustering Algorithm Incorporating PSO into k- Means Algorithm
下载PDF
导出
摘要 k均值算法是聚类分析的一种传统算法,在数据挖掘中等领域得到了广泛的应用.本文在分析k均值聚类算法存在问题的基础上,用粒子群算法优化k均值聚类算法,提出了一种新的混合聚类算法.理论分析和实验结果证明,该算法有很好的全局收敛性,不仅有效地克服了传统的k均值算法易陷入局部极小值和对初始值敏感的问题,而且具有较快的收敛速度.
机构地区 上海交通大学
出处 《中国管理科学》 CSSCI 2004年第z1期96-99,共4页 Chinese Journal of Management Science
  • 相关文献

参考文献5

  • 1[1]Jain A K,Murty M N,Flynn P J. Data clustering: A survey[J].ACM Computer Survey, 1999,31:264 - 323.
  • 2[2]Jain A K, Dubes R C. Algorithms for clustering data[ M ]. Englewood Cliffs, NJ: prentice Hall, 1988.
  • 3[3]MacQueen J. Some methods for classification and analysis of multivariate observations[ C ]. In: proceedings of the 5th Berkeley Symposium on mathematics Statistic Problem, 1967,1:281 -297.
  • 4周驰,高海兵,高亮,章万国.粒子群优化算法[J].计算机应用研究,2003,20(12):7-11. 被引量:177
  • 5侯志荣,吕振肃.基于MATLAB的粒子群优化算法及其应用[J].计算机仿真,2003,20(10):68-70. 被引量:109

二级参考文献26

  • 1[1]Kennedy J, Eberhart RC,Shi Y.Swarm Intelligence[M].San Francisco:Morgan Kaufman Publishers,2001.
  • 2[2]Mataric M.Designing and Understanding Adaptive Group Behavior[J].Adaptive Behavior,1995,4:1-12.
  • 3[3]Dorigo M,V Maniezzo,A Colorni.The Ant System:Optimization by a Colony of Cooperating Agents[J].IEEE Transactions on Systems, Man and Cybernetics, 1996.
  • 4[4]Kennedy J,Eberhart R C.Particle Swarm Optimization[C].Proceedings of IEEE International Conference on Neutral Networks,Perth,Australia,1995.1942-1948.
  • 5[5]Kennedy J.The Particle Swarm:Social Adaptation of Knowledge[C].Proceedings of IEEE International Conference on Evolutionary Computation,Indianapolis,Indiana,1997.
  • 6[6]Eberhart R C,Kennedy J.A New Optimizer Using Particle Swarm Theory[C].Proceedings of Sixth International Symposium Micro Machine and Human Science,Nagoya,Japan,1995.
  • 7[7]Shi Y H,Eberhart R C.Parameter Selection in Particle Swarm Optimization[C].Annual,1998.
  • 8[8]Eberhart R C, Shi Y H.Comparison between Genetic Algorithms and Particle Swarm Optimization[R].Annual Conference on Evolutionary Programming, San Diego,1998.
  • 9[9]Shi Y H,Eberhart R C.A Modified Particle Swarm Optimizer[R].IEEE International Conference on Evolutionary Computation,Anchorage,Alaska,1998.
  • 10[10]Shi Y H,et al.Empirical Study of Particle Swarm Optimization[R].Proceedings of Congress on Evolutionary Computation,1999.

共引文献277

同被引文献61

  • 1樊玮.粒子群优化方法及其实现[J].航空计算技术,2004,34(3):39-42. 被引量:16
  • 2单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. 被引量:198
  • 3刘向东,沙秋夫,刘勇奎,段晓东.基于粒子群优化算法的聚类分析[J].计算机工程,2006,32(6):201-202. 被引量:26
  • 4毛韶阳,李肯立.优化K-means初始聚类中心研究[J].计算机工程与应用,2007,43(22):179-181. 被引量:26
  • 5MACQUEEN J B. Some methods for classification and analysis of multivariate observations[ C]//Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 1967:281 - 297.
  • 6AL-DAOUD M B, ROBERTS S A. New methods for the initialization of clusters[J]. Pattern Recognition Letters, 1996, 17(5): 51-455.
  • 7KENNEDY J, EBERHART R. Particle swarm optimization[ C] // Proceedings of IEEE International Conference on Neural Networks. Washington, DC: IEEE Computer Society, 1995:1942-1948.
  • 8SU SHENG. Image classification based on particle swarm optimiza- tion combined with K-means[ C]// International Conference on Test and Meansurement. Washington, DC: IEEE Computer Society, 2009:367-370.
  • 9KAO I W, TSAI C Y, WANG Y C. An effective particle swarm optimization method for data clustering[ C]//2007 IEEE International Conference on Industrial Engineering and Engineering Management. Washington, DC: IEEE Computer Society, 2007:548-552.
  • 10ZHANG YUFANG, XIONG ZHONGYANG, MAO JIALI, et al. The study of parallel K - means algorithm [ C ]// Proceedings of the 6th World Congress on Intelligent Control and Automation. Washington, DC: IEEE Computer Society, 2006:5868-5871.

引证文献7

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部