摘要
采用振动分析法来进行滚动轴承元件的故障诊断.通过带通滤波、包络谱分析和小波包分析提取了反映滚动轴承故障的5个频域特征参数,同时还提取了对轴承早期冲击故障较敏感的5个时域指标.基于上述10个故障特征值,采用BP神经网络、基于遗传算法的RBF神经网络进行故障分类训练.试验结果表明:上述10个特征值对不同的滚动轴承故障非常敏感;BP网络和基于遗传算法的RBF网络都能有效地分类不同故障;基于遗传算法的RBF网络在训练时间、训练误差以及识别精度上优于BP网络.试验证明了上述方法在滚动轴承故障诊断中的有效性.
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2004年第z1期220-224,共5页
Journal of Jilin University:Engineering and Technology Edition
基金
国家自然科学基金资助项目(60274015)
"863"国家高技术研究发展计划资助项目(2002AA412420)