期刊文献+

一个高效的一维有限元自适应求解的新方案 第十三届全国结构工程学术大会特邀报告

AN EFFICIENT SELF-ADAPTIVE STRATEGY FOR ONE-DIMENSIONAL FINITE ELEMENT METHOD
下载PDF
导出
摘要 基于新近提出的一维有限元后处理超收敛算法——单元能量投影(EEP)法,将有限元自适应求解问题转化为对超收敛解答的自适应分段多项式插值问题,一步便可获得最优的有限元网格划分,在该网格上再次进行有限元计算,即可获得满足用户给定的误差限的有限元解答。该法简单实用、快速高效,是一个颇具优势和潜力的自适应方法。文中以二阶常微分方程模型问题为例,对该法的形成思路和实施策略做一介绍,并给出有代表性的数值算例用以展示该法的优良性能和效果。 Based on the newly-developed Element Energy Projection (EEP) method for computation of super-convergent results in one-dimensional Finite Element Method (FEM), the task of self-adaptive FEM analysis is converted into the task of adaptive piecewise polynomial interpolation. As a result, an optimum FEM mesh can be obtained, and further FEM analysis on this mesh would immediately produce a FEM solution which satisfies the user specified error tolerance. This strategy has been found to be very simple, rapid, ch...
作者 袁驷 和雪峰
出处 《工程力学》 EI CSCD 北大核心 2004年第S1期214-220,共7页 Engineering Mechanics
基金 国家自然科学基金资助项目(50278046)
关键词 有限元法 自适应求解 超收敛 单元能量投影法 常微分方程的数值解 FEM adaptive solution super-convergence element energy projection ODE
  • 相关文献

参考文献1

二级参考文献8

  • 1Strang G and Fix G. An analysis of the finite element method [M]. Prentice-Hall, 1973.
  • 2Douglas J, Dupont T. Galerkin approximations for the two point boundary problems using continuous, piecewise polynomial spaces [J]. Numer. Math., 1974, (22): 99-109.
  • 3Zhu J Z, Zienkiewicz O C. Superconvergence recovery technique and a posteriori error estimator [J]. International Journal for Numerical Methods in Engineering, 1990, 30: 1321-1339.
  • 4Zienkiewicz O C, Zhu J Z. The superconvergence patch recovery and a posteriori error estimator, part I: the superconvergence patch recovery [J]. International Journal for Numerical Methods in Engineering, 1992, 33: 1331-1364.
  • 5Tong P. Exact solution of certain problems by finite-element method [J]. AIAA Journal, 1969, (7): 178-180.
  • 6Yuan Si. From matrix displacement method to FEM: loss and recovery of stress accuracy [A]. Proceedings of First International Conference on Structural Engineering [C]. ed. Y. Long, 1999, Kunming, China, 134-141.
  • 7袁驷 王枚.有限元(线)法超收敛应力计算的新方案及其若干数值结果[C].袁明武主编.中国计算力学大会论文集[C].广州, 中国,2001,12月..
  • 8袁驷.从矩阵位移法看有限元应力精度的损失与恢复[J].力学与实践,1998,20(4):1-6. 被引量:23

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部