期刊文献+

基于小波压缩域的统计纹理特征提取方法 被引量:8

Statistical Texture Feature Extraction Based on Wavelet Compressed Domain
下载PDF
导出
摘要 本文提出了一种基于相邻尺度子带间统计特性的、可直接在小波压缩域操作的纹理特征提取方法 .主要思想是依据小波压缩域各子带相应空间位置的系数间存在着明显的相关性 ,提取反映这种依存关系的纹理特征 .在提取特征时采用与压缩标准兼容的技术 ,可在部分解压的情况下 ,实现压缩域纹理图象的快速分类 .实验结果表明提出的方法优于现有常用方法 ,计算速度明显提高 .尤其是和传统的子带能量特征相结合时 。 Discrete wavelet transform has often been used for multi-scale texture characterization through the analysis of spatial-frequency content.Most previous methods make no account of the correlation of coefficients in adjacent subbands.However,in intuition,the coefficients in adjacent subbands are highly correlated.A novel method for texture feature extraction is now proposed based on the statistics relationships of wavelet coefficients at adjacent scale subbands with the same orientation.In addition,taking into account the fact that most of current images are stored and transmitted in the compressed format,we try to make the proposed method compatible with the new generation image compression standard-JPEG2000.Therefore,texture classification can be performed directly on the compressed DWT domain(just entropy decoding needed).Experimental results show that the proposed scheme has outperformed the previous methods,and the best performance is achieved by combining cross-subband relationship and traditional subband energy.
出处 《电子学报》 EI CAS CSCD 北大核心 2003年第z1期2123-2126,共4页 Acta Electronica Sinica
基金 国家自然科学基金 (No .60 1 72 0 4 5) 北京市自然科学基金 (No.40 4 2 0 0 8)
关键词 纹理分类 多尺度分析 离散小波变换 共生矩阵 压缩域 texture classification multi-scale analysis discrete wavelet transform co-occurrence matrix compressed domain
  • 相关文献

参考文献12

  • 1黄祥林,沈兰荪.基于内容的图像检索技术研究[J].电子学报,2002,30(7):1065-1071. 被引量:101
  • 2[3]Daugman J G. An information-theoretic view of analog representation in striate cortex [ A ]. Schwartz, E. Computational Neuroscience [ C ].Cambridge: MIT Press, 1990.403 - 423.
  • 3[4]Manjunath B S, Ma W Y. Texture features for browsing and retrieval of image data [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(8): 837 - 842.
  • 4[5]Mallat S. A theory for multiresolutional signal decomposition: the wavelet representation [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11 (7): 674 - 693.
  • 5[6]Chang T, Kuo C C J. Texture analysis and classification with tree-structured wavelet transform [ J ]. IEEE Trans. Image Processing, 1993, 2(4) :429 - 441.
  • 6徐朝伦,王晓湘,柯有安.基于子波变换的纹理图像分类[J].电子科学学刊,1999,21(3):404-407. 被引量:4
  • 7[8]Van de Wouwer G, Scheunders P, Van Dyck D. Statistical texture characterization from discrete wavelet representations [ J ]. IEEE Transactions on Image Processing, 1999,8(4) :592 - 598.
  • 8[10]Shapiro J M. Embedded image coding using zerotrees of wavelet coefficients [ J ]. IEEE Transactions on Signal Processing, 1993, 41 (12):3445- 3462.
  • 9[11]Portilla J, Simoncelli E P. A parametric texture model based on joint statistics of complex wavelet coefficients [ J ]. International Journal of Computer Vision,2000,40( 1 ) :49 - 70.
  • 10[12]Haralick R M, Shanmugam K, Dinstein I. Textural feature for image classification [ J ]. IEEE Trans. on Systems, Man, and Cybernetics,1973,3(6) :610 - 621.

二级参考文献57

  • 1一种基于向心链码的形状检索方法[J].数据采集与处理,2001,16(z1):148-152. 被引量:4
  • 2Mandal M K. Wavelet based coding and indexing of images and video-Ph D dissertationS. University of Ottawa, Ottawa, Canada, 1998.
  • 3Chang Shih-Fu. Compressed-domain techniques for image/video indexing and manipulation. In: Proceedings of IEEE International Conference on Image Processing, Washington, DC,USA, 1995. 314-317.
  • 4Ma W Y, Manjunath B S, A comparison of wavelet transform features for texture image annotation, In: Proceedings of IEEE International Conference on Image Processing, Washington,DC,USA, 1995. 256-259.
  • 5Lee Moon-Chuen, Pun Chi-Man. Texture classification using dominant wavelet packet energy features. In: Proceedings of IEEE Southwest Symposium on Image Analysis and Interpretation, Austin, TX, USA, 2000. 301-304.
  • 6Chang T, Kuo C C J. Texture analysis and classification withtree-structured wavelet transform. IEEE Transactions on Image Processing,1993, 2(4) : 429-441.
  • 7Mandal M K, Aboulnasr T, Panchanathan S. Fast wavelet histogram techniques for image indexing. Journal of Computer Vision and Image Understanding. 1999, 75(1) : 99-110.
  • 8Smith J R, Chang S F. Automated binary texture feature setsfor image retrieval. Ins Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Atlanta,1996. 2239-2242.
  • 9Seales W B, Yuan C J, Brown M. Efficient content extractionin compressed images. In: Proceedings of IEEE Workshop on Content-Based Access of Image and Video Libraries, San Juan,.Puerto Rico,1997. 52-58.
  • 10Yu Hong Heather. Visual image retrieval on compressed domain with Q-distance. In: Proceedings of IEEE International Conference on Computational Intelligence and Multimedia Applications, New Delhi, India, 1999. 1013-1016.

共引文献123

同被引文献62

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部