期刊文献+

可行方向算法与模拟退火结合的NMF特征提取方法 被引量:6

Learning NMF Representation Using a Hybrid Method Combining Feasible Direction Algorithm and Simulated Annealing
下载PDF
导出
摘要 NMF子空间特征提取被表示成一个大规模线性约束非线性优化问题 .为了获得更优性能的基图像 ,设计了一个可行方向算法结合模拟退火算法的混合算法来求解这个优化问题 .以基于梯度的可行方向算法作为局部寻优的手段 ,加快收敛速度 ;以模拟退火算法作为全局寻优的手段 ,避免优化过程陷入局部极小点 .同时 ,在模拟退火操作中 ,采用对比度增强算法 ,使获得的基图像更加地空间局部化 .实验表明 ,本文的可行方向算法比采用归一化实现等式约束的原算法在学习的最后阶段有更好的收敛速度 ,所获得的基图像更加地空间局部化 。 Non-negative matrix factorization(NMF) is formulated as a large-scale optimization problem with linear equality constraints.To get better performance,a hybrid combining simulated annealing(SA) and gradient-based algorithm is designed.The simulated annealing gradually produces better solutions with the gradient-based algorithm serving as an 'accelerator'.Experimental results are presented to compare our method and the original method for learning NMF representation,which demonstrate the proposed method can learn basis images more spatially localized and perform better than the original one at later training stages.The comparison study on face reconstruction also shows that the proposed method leads to better results than PCA and the original NMF.
出处 《电子学报》 EI CAS CSCD 北大核心 2003年第z1期2190-2193,共4页 Acta Electronica Sinica
基金 国家自然科学基金 (No .60 2 71 0 33)
关键词 子空间特征提取 NMF 可行下降方向算法 模拟退火 人脸重建 subspace representation non-negative matrix factorization feasible direction method simulated annealing face reconstruction
  • 相关文献

参考文献13

  • 1[1]Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection[J]. IEEE Trans PAMI 1997,19(7) :711 - 720.
  • 2[2]Moghaddam B. Principal manifolds and probabilistic subspaces for visual recognition[ J ]. IEEE Trans PAMI, 2002,24 ( 6 ): 780 - 788.
  • 3[3]Hyvarinen A, Oja E. Independent component analysis: algorithms and applications [ J ]. Neural Networks, 2000,13 ( 4,5 ): 411 - 430.
  • 4[4]Bartlett M S, Movellan J R, Sejnowski T J. Face recognition by independent component analysis[ J]. IEEE Trans Neural Networks, 2002,13(6): 1450 - 1464.
  • 5[5]Li S Z, Hou X W, Zhang H J, Cheng Q S. Learning spatially localized,parts-based representation[ A]. Proceedings of the 2001 IEEE Computer Society Conference on CVPR[ C ]. IEEE, 2001. 207 - 212.
  • 6[6]Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization[ J]. Nature, 1999,401 (10) :788 - 791.
  • 7[7]Lee D D, Seung H S. Algorithms for non-negative matrix factorization[A]. Advances in Neural Information Processing[ C]. MIT Press, 2001.556- 562.
  • 8[8]Guillamet D, Vitria J. Evaluation of distance metrics for recognition based on nonnegative matrix factorization[ J ]. Pattern Recognition Letters,2003,24(9,10): 1599 - 1605.
  • 9[9]Bazarra M S, Sherali H D, Shetty C M. Nonlinear Programming[ M ].John Wiley & Sons Inc. 1993.
  • 10[10]Castleman K R. Digital Image Processing[ M ]. Prentice-Hall Inc. 1996.

同被引文献65

  • 1LlU Weixiang ZHENG Nanning YOU Qubo.Nonnegative matrix factorization and its applications in pattern recognition[J].Chinese Science Bulletin,2006,51(1):7-18. 被引量:22
  • 2梁栋,杨杰,卢进军,常宇畴.基于非负矩阵分解的隐含语义图像检索[J].上海交通大学学报,2006,40(5):787-790. 被引量:7
  • 3欧阳怡彪,蒲晓蓉,章毅.基于小波和非负稀疏矩阵分解的人脸识别方法[J].计算机应用研究,2006,23(10):159-162. 被引量:7
  • 4Hyvarinen A,Karhunen J,Oja E.Independent Component Analysis[M].New York:John Wiley & Sons,2001.
  • 5Murty S,Kompella A.Technique to Determine the Number of Incoherent Sources to the Response of a System[J].Mechanical System and Signal Processing,1994,8(4):363-380.
  • 6Lee D D,Seung H S.Algorithms for Non-negative Matrix Factorization.Advances in Neural Infornlation Processing[J].Advances in Neural Information Processing Systems,2001,13:556-562.
  • 7Bazarra M S,Sherali H D,Shetty C M.Nonlinear Programming[M].New York:John Wiley & Sons,1993.
  • 8Turk M A, Pentland A P. Eigenfaces for Recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
  • 9Pierre C. Independent Component Analysis, a New Concept?[J]. Signal Processing, 1994, 36(3): 287-314.
  • 10Lee D D, Seung H S. Learning the Parts of Objects by Non-negative Matrix Factorization[J]. Nature, 1999, 401(10): 788-791.

引证文献6

二级引证文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部