期刊文献+

提高铀抗氢化性能的碳氧离子组合注入 被引量:1

Suppression of Uranium-hydrogen Reaction by Ion Implantation With Carbon and Oxygon Ions
下载PDF
导出
摘要 利用离子注入方法,将CO_2气体离解后的离子,在不同能量、束流下注入贫铀表面。利用俄歇能谱仪(AES)分析改性层中元素的浓度分布,用低角度X射线衍射仪(GAXRD)分析离子注入层的结构。在t=100℃、p=0.2 MPa条件下,利用铀-氢气体反应测试离子注入C、O后贫铀的铀氢反应孕育期,用扫描电镜(SEM)观察试样氢化反应前后的表面形貌。结果表明:注入C、O离子后,形成了结构致密的改性层。在35 kV/8~9 mA/3 h(注入能量/注入束流/注入时间)注入条件下,改性层由UO_2和石墨C组成;在65 kV/8~9 mA/3 h和3 kV/80 mA/3 h注入条件下,改性层为UO_2和少量UC。UO_2和UC为低氢渗透材料,抑制了氢向基体界面的迁移和渗透,从而降低了氢化物在界面形核和长大的几率,增强了铀抗氢化性能。氢化反应后,空白贫铀试样表面出现较多的蚀坑,并造成大面积脱落,而注入样品的表面仅出现较少孤立的蚀点。 Decomposed CO2 gas is implanted to uranium at different energy, beam current and temperature. The Auger electron spectromy (AES) and globe angle X-ray diffraction (GAXRD) are applied to analyze the element distribution and phase structure of modified layers. The induction time is investigated on implanted sample by uranium-hydrogen reaction at 100 ℃ and 0. 2 MPa conditions. The surface micrography is investigated by scanning electron spectromy (SEM) before and after uranium-hydrogen reaction. The results show that the modified layer implanted with oxygen and carbon ions consists of UO2 and C at the condition of 35 kV/8-9 mA/3 h, UO2 and small UC at the conditions of 65 kV/8~9 mA/3 h and 3 kV/80 mA/3 h. The induction of the implanted sample increases significantly, because the UO2 and UC modified layers retard to the production nuclei and growth of hydride. The depleted uranium has macros flake on sur- face, but the implanted samples have isloated spots after uranium react with hydrogen.
出处 《原子能科学技术》 EI CAS CSCD 2003年第z1期126-130,共5页 Atomic Energy Science and Technology
关键词 离子注入 CO2 抗氢化 ion implantation CO_2 uranium antihydriding
  • 相关文献

参考文献9

  • 1[1]Bloch J, Brami D, Kremmer A, et al. Effects of Gas Phase Impurties on the Topochemical Kine tic Behaviour of Uranium Hydride Development[J]. J Less-Comm Met, 1988,139: 371 ~ 383.
  • 2[2]Bloch J, Hmintz M. Types of Hydride Phase Development in Bulk Uranium and Holmium[J].J Nucl Mater,1982,110:251~255.
  • 3[3]Bloch J, Simsca F, Kroup M, et al. The Initial Kinetics of Uranium Hydride Formation Studied by a Hot stage Microscope Technique[J]. J LessCommon Met, 1984,103:163~ 171.
  • 4[4]Raveh A, Arkush R, Zalkind S, et al. Passivation of Uranium Metal by Radio-frequency Plasma Nitriding Against Gas Phase (H2, H2 O) Corrosion[J]. Surface and Coating Technology, 1996,82:38~41.
  • 5[5]Musket RG, Robinson-weis G, Patterson RG.Modication of the Hydriding of Uranium Using Ion Implantation: UCRL-89360 [R]. California,USA: UCRL, 1983.
  • 6[6]Musket RG. Suppresion of the Uranium hydrogen Reaction Using High-dose Carbon Implantation:UCRL-95609[R]. California, USA: UCRL, 1987.
  • 7[7]Musket RG. Application of Ion Implantation for Modifying the Interactions Between Metals and Hydriding Gas: UCRL-96998 [R]. California,USA: UCRL, 1988.
  • 8[8]Musket RG,Robinson-weis G,Patterson RG. Decreasing the Hydriding of Uranium Using Ion Implantation: UCRL-89358[R]. California, USA:UCRL, 1983.
  • 9[9]倪然夫.铀-氢反应孕育期研究[R].四川绵阳:中国工程物理研究院,1989.

同被引文献5

  • 1Arkush R,Mintz M H,Shamir N.Passivation of uranium towards air corrosion by N2+ and C + ion implanation[J].J Nucl Mater,2000(281) :182~190.
  • 2Arkush R,Brill M,Zalkind S,et al.The effect of N2+ and C + implanation on uranium hydride nucleation and growth kinetics [J].J Alloys Comp,2002 ( 330~332) :472~475.
  • 3刘柯钊 赖新春 愈勇.金属铀表面含氧碳化物的组成与性质[R].北京:原子能出版社,1999..
  • 4王平,杨树贞,史秋华.溅射成膜中几个问题的探讨[J].真空,2000,37(6):35-37. 被引量:5
  • 5王小英,刘天伟,沟引宁,王勤国.贫铀表面碳氧离子注/渗及其抗蚀性能研究[J].表面技术,2002,31(1):12-15. 被引量:6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部