期刊文献+

SV-M模型下VaR和ES估计的极值方法 被引量:1

Estimation of Value at Risk and Expected Shortfall for Stochastic Volatility in Mean Model:An Extreme Value Approach
下载PDF
导出
摘要 本文对随机波动均值内模型(SV-M)应用极值理论(EVT)的方法估计了金融回报的风险价值(VaR)和期望短缺(ES).用SV-M建模异方差金融回报时间序列,刻画了其波动聚类.用蒙特卡罗极大似然方法(MCL)来估计其参数.我们用基于一般帕累托分布(GPD)的EVT拟合SV-M模型的修正分布尾部,刻画了金融时序分布的肥尾特性.因此,本文的极值方法有效地克服了原有方法的缺陷,综合考虑了金融时序的波动聚类及其分布的肥尾特性,给出了合理的VaR和ES估计,对市场风险测度的研究进行了有益的探讨.
出处 《数理统计与管理》 CSSCI 北大核心 2003年第z1期314-317,共4页 Journal of Applied Statistics and Management
  • 相关文献

参考文献7

  • 1[1]Duffie, D., Pan, J.,1997. An Overview of Value at Risk. Journal of Derivatives. Vol.4,7-19
  • 2[2]Artzner, P., Delbaen, F., Heath, D., 1999. Coherent measures of risk. Mathematical Finance 9(3),203-228.
  • 3[4]Sandmann, G., Koopman,. S. J. Estimation of stochastic volatility models via Monte Carlo maximum likelihood. Journal of Econometrics 87(1998) 271-301.
  • 4[5]McNeil, A. J., Frey, R. 2000. Estimation of tail-related risk measure for heteroscedastic financial time series:an extreme value approach. Journal of Empirical Finance 7(2000) 271-300.
  • 5[6]Sandmann, G, Koopman,. S. J. Estimation of stochastic volatility models via Monte Carlo maximum likelihood. Journal of Econometrics 87(1998) 271-301.
  • 6[7]Koopman, S. J., Uspensky, E. H.,2001. The Stochastic Volatility in Mean model: Empirical evidence from international stock markers. Working paper. http://staff. feweb.vu.nl/koopman/
  • 7[8]Pichands, J., (1975), Statistical inference using extreme order statistics. The Annals of Statistics 3,119-131.

同被引文献47

  • 1余素红,张世英,宋军.基于GARCH模型和SV模型的VaR比较[J].管理科学学报,2004,7(5):61-66. 被引量:76
  • 2曲圣宁,田新时.投资组合风险管理中VaR模型的缺陷以及CVaR模型研究[J].统计与决策,2005,21(05X):18-20. 被引量:17
  • 3刘俊山.基于风险测度理论的VaR与CVaR的比较研究[J].数量经济技术经济研究,2007,24(3):125-133. 被引量:39
  • 4Zangaric, P. An Improved Methodology for Measuring VaR[M]. RiskMetrics Monitor, Reuters/J. P. Morgan, 1996.
  • 5Bouchaud, J. P. , M. Potters. Theory of Financial Risk: From Statistical Physics to Risk Management[M]. Cambridge., Cambridge University Press, 1999.
  • 6Assaf, A. Extreme observation and risk assessment in the equity markets of MENA region:Trail measures and Value-at-risk[J]. International Review of Financial Analysis, 2009, (18).
  • 7Venkataraman,S. Value-at-Risk for a mixture of normal distributions:The use of quasi-bayesian estimation techniques[J]. Economic Perspectives, Federal Reserve Bank of Chicago, 1997, (2).
  • 8Bauer,C. Value-at-risk using hyperbolic distributions[J]. Journal of Economies & Business ,2000, (5).
  • 9Khindanova, I. , S. Rachev, E. Schwartz. Stable modeling of Value-at-Risk[J]. Journal of Derivatives, 2001, (3).
  • 10Haas, M. Value-at-risk via mixture distributions reconsidered [J].Applied Mathematics and Computation, 2009, (215).

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部