期刊文献+

低膨胀高温合金的发展及在航空航天业的应用 被引量:40

Development of low thermal expansion superalloys and their application in aerospace
下载PDF
导出
摘要 回顾了低膨胀高温合金的发展历史。“因瓦效应”和“时效硬化”现象的发现奠定了低膨胀高温合金发展的基础。20世纪70年代航空航天事业的迅猛发展以及能源危机的爆发为低膨胀高温合金在航空航天业的实际应用提供了宝贵的契机,最早的商用Fe-NiCo(IN9××)系列合金,经过用Nb、Ti强化,去Al,加Si等一系列成分上的变化,显著改善其应力加速晶界氧化脆性(SAGBO性能),从此低膨胀高温合金在航空航天领域得到大量应用。为改善此类合金的抗氧化和降低裂纹扩展速率等性能,又进行了新合金系的研究,即以Inconel 783合金为代表的 Fe-Ni-Co-Al-Cr系合金和以Haynes 242合金为代表的Ni-Mo-Cr系合金的研究,这些合金在750℃仍能达到完全抗氧化,为新一代飞机发动机的发展提供了优质材料。 The development history of low thermal expansion superalloy has been reviewed in this paper. The basis of development for these kind of alloys was established by discovery of ' Invar effect' and ' age-hardening '. In 1970's, it was provided a good chance for development of low thermal expansion superalloys for the rapid developing of aerospace industry and the shock of energy sources lack. The stress-accelerated grain boundary oxidation embritllement (SAGBO) was obviously improved by modification of compositions, such as strengthening by Nb and Ti, elimination of Al, the addition of Si for early commercial Fe-Co- Ni (IN 9xx) alloy series. Afterward the low thermal expansion superalloys were wide applied in aerospace. New exploring work continues for improving oxidation resistance and decreasing crack propagation rates of alloys. The results were to obtain Fe-Co-Ni-Al-Cr and Ni-Mo-Cr series alloys representative Inconel alloy 783 and HAYNES 242 respectively. These alloys achieve full oxidation resistance up to 750℃ . Therefore it showed provide high quality material for new aero-engines.
出处 《航空材料学报》 EI CAS CSCD 2003年第z1期244-249,共6页 Journal of Aeronautical Materials
关键词 低膨胀 高温合金 因瓦效应 时效硬化 low expansion superalloys Invar effect age-hardening alloying
  • 相关文献

参考文献23

  • 1[1]SMITH D F,SMITH J S.A history of controlled low thermal expansion superalloys[A].RUSSELL K C,SMITH D F. Physical Metallurgy of Controlled Expansion Invar-Type Alloys[M]. 1990, 253-272.
  • 2[2]SCOTT Howard .Expansion properties of low-expansion Fe-Co-Ni Alloys[J]. Trans Am Inst of Mining and Metallurgical Engineers,1930, 89 , 506-537.
  • 3[3]HUNSICKER H Y,STUMPF H C.History of precipitation hardening[A].SMITH C S. The Sorby Centennial Symposium on the History of Metallurgy[M].New York: Gordon and Breach Science Publishers, 1965. 271-311.
  • 4[4]PILLING N B,TALBOT A M.Age Hardenable, Nickel - Iron - Chromium - Titanium Alloy Possessing Controlled Thermoelastic Properties[P].U. S. Patent:2266482,1941-12-16.
  • 5[5]EISELSTEIN H L,BELL J K.Alloy Characterized by Controlled Thermoelasticity at Elevated Temperatures[P]. U. S. Patent:3157495, 1964-11-17.
  • 6[6]Huntington Alloys.INCOLOY alloy 903[R]. 5M 7-78 s-51.
  • 7[7]SMITH D F,WENSCHHOF D E.A Survey of Progress in Controlled-Expansion[A]. Age-Hardenable Nickel- Iron- Cobalt Alloys [R]. The TMS-AIME Fall Meeting. Detroit. Michigan. Oct. 18~21,1971.
  • 8[8]WANNER E A,DEANTONIO D A,SMITH D F,et al.The current status of controlled thermal expansion superalloys [J]. Journal of Metals, 1991,43(3):38-43.
  • 9[10]BRICKNELL R H,WOODFORD D A.Grain-boundary embrittlement of the iron-base Superalloy IN903A[J]. Met Trans,1981,12A:1673-1679.
  • 10[11]Inco Alloys International, INCOLOY alloy 907 [R]. Publication No. IAI-22. 1987.

共引文献10

同被引文献308

引证文献40

二级引证文献161

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部