期刊文献+

模拟视觉系统的稀疏编码神经网络模型

Sparse Code Neural Network Model Based on Visual System
下载PDF
导出
摘要 神经生物学研究表明,视感知系统V1层神经元的感受野对刺激图像采取稀疏表示的策略.本文模拟视感知系统对视觉信息的处理提出了稀疏编码的神经网络模型.该模型用快速ICA算法得到的特征基模拟感受野,反馈网络的输出模拟简单细胞的响应.对自然图像的编码实验说明该模型在生物学上的合理性和计算上的可行性.
作者 邹琪 罗四维
出处 《信号处理》 CSCD 2003年第z1期224-227,共4页 Journal of Signal Processing
基金 博士点基金基于视觉处理模式的信息有效编码研究资助项目(20020004020)
  • 相关文献

参考文献10

  • 1[1]Barlow, H.B., "Possible Principles Underlying the Transformations of Sensory Messages", Sensory Communication, MIT Press, pp217-234, 1961;
  • 2[2]Yong M.P, Yamane S. "Sparse Population Coding of Faces in the Inferotemporal Cortex[J]", Science ,256:1, pp 1327-1330,1992;
  • 3[3]Eero P Simoncelli ,Bruno A Olshausen, "Natural Image Statistics and Neural Representation" , NeuroScience, 24:1,pp193-216, 2001;
  • 4[4]Bruno A Olshausen ,D.J. Field "Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1 ?" Vision Research, 37:3313-3325, 1997;
  • 5[5]Hyvarinen,A. and Hoyer, P.O. "A Two-layer Sparse Coding Model Learn Simple and Complex Cell Receptive Fields and Topography from Natural Images" , Vision Research 41(18):2413-2423, 2002;
  • 6[6]Pham. D.T.,Gurrat. P. and Jutten. C. "Seperation of a mixture of independent sources through maximun likelihood approach",In proc. EUSIPCO, pp771-774, 1992;
  • 7[7]Xu Lei "Least Square Error Reconstruction Principle for self-Organizing NN.' Neural Network, 6:627-648, 1993;
  • 8[8]Rolls E.T. ,Tovee M. J. "sparseness of the neuronal representation of stimuli in primate temporal visual cortex[J]",Neurophysiology, 173:713-726, 1995;
  • 9[9]Hinton G.E. and Ghahramani Z. "Generative models for discovering sparse distributed representation", Phil. Trans. R.Soc. Lond. B, 352:1171-1190, 1997;
  • 10[10]Barlow H.B. "Redundancy Reduction Revisited", Network:Computation in Neural Systems, 12:241-253, 2001b

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部