期刊文献+

黑根霉菌自由细胞和固定化细胞对重金属铅的生物吸附 被引量:2

Study on Biosorption of Lead on Rhizopus Stolonifer Free Cells and Immobilized Cells
下载PDF
导出
摘要 通过分组实验,分别研究了黑根霉菌自由细胞和固定到聚氨酯泡沫立方体上的细胞对pb^(2+)的生物吸附,以确定固定化对pb^(2+)吸附的影响。自由细胞需要30min达到吸附平衡,而固定化细胞因为聚氨酯泡沫的作用需要120min。pH值对Pb^(2+)的吸附效果具有很大的影响,吸附的最佳pH值为5.0。同时把在不同pb^(2+)浓度下的吸附平衡数据用Langmuir吸附模式线性拟合,得出自由细胞和固定化细胞的最大吸附量分别为166.7mg/g和400mg/g。最后通过对五种化学药剂解吸效果的研究,得出0.1mol/L的HNO_3对吸附到固定化黑根霉菌上的pb^(2+)解吸效果不错,解吸率达到99.2%。 The biosorption of Pb^(2+) on Rhizopus stolonifer free cells and cells immobilized in 15 millimeter cubic polyurethane foam in batch experiments have been studied respectively in this paper to determine the effect of immobilization on Pb_(2+)accumulation. When free cells were used, the sorption equilibrium was reached in 30 minutes, but with immobilized cells it took 120 minutes as a consequence of the effect of polyurethane foams, pH value was found critical for Pb^(2+) accumulation, the optimum being 5.0. At the same time adsorption equilibrium data in different Pb^(2+) concentrations have been linerized by Langmuir adsorption model, the maximum uptake capacities for free cells and immobilized cells being 166.7 mg/g and 400 mg/g respectively. In the end desorption of Pb_(2+) adsorbed by Rhizopus stolonife immobilized cells by 0.1 mol/L HNO_3 was efficient by studying the desorption effects of five chemical substances, desorpton rate being 99.2 percent.
出处 《污染防治技术》 2003年第z2期1-4,共4页 Pollution Control Technology
基金 上海市高等学校青年基金(01-QN-68) "211"重点学科建设基金(G642)资助项目
关键词 黑根霉菌 聚氨酯泡沫 生物吸附 固定化 解吸 Rhizopus stolonifer polyurethane foam biosorption immobilization desorption
  • 相关文献

参考文献18

  • 1[2]KAPOOR A,VIRARAGHAVAN T, CULLIMORE D R. Removal of Heavy Metals Using the Fungus Aspergillus Niger[J]. Bioresourse Technology, 1999,70:95 - 104.
  • 2[3]PASCAL Ginisty, BERNARD Besnainou, CLAIRE Sahut. Biosorption of Cobalt by Pseudomonas Halodenitrificans: Influence of Cell Wall Treatment by Alkali and Alkaline - earth Metals and Ion - exchange Mechanisms [ J ] . Biotechnology Letters, 1998, 20 ( 11 ):1 035- 1 039.
  • 3[4]RUCHI Gulati, SAXENA R K, RANI Gupta. Fermentation Waste of Aspergillus Terreus: a Potential Copper Biosorbent[J]. World Journal of Microbiology & Biotechnology, 2000, 18: 397 - 401.
  • 4[5]SUBHASHREE Pradhan, RAIL C. Biotechnological Potencial of Microcystis sp. in Cu, Zn and Cd Biosorption from Single and Multimetallic Systems[J]. Biometals,2001,14:67 - 74.
  • 5[6]VEGLIO F, EOLCHINI F B. Removal of Metals by Biosorption: a Review[J]. Hydrometallurgy, 1997,44:301 - 316.
  • 6石杰,刘晓岚.用固定化生物材料去除水体中的重金属离子[J].环境科学与技术,2001,24(6):30-31. 被引量:5
  • 7[8]ANOOP Kapoor, Viraraghavan T, ROY Cullimore D. Removal of Heavy Metals Using the Fungus Aspergillus Niger[J]. Bioresource Technology, 1999,70: 95- 104.
  • 8[9]GADD G M. Biosorption[J]. Journal of Chemical Technology and Biotechnology, 1986,55: 302 - 304.
  • 9[10]NABIL H, ABDEL- RAZEK A S, HAFEZ M B. Accumulation of Heavy Metals on Aspergillus Flavus [J]. Journal of Chemical Technology and Biotechnology, 1997,68: 19 - 22.
  • 10董新姣,潘瑞通,林宣兴.无花果曲霉对铅的吸附研究[J].四川环境,2002,21(1):12-15. 被引量:7

二级参考文献13

共引文献89

同被引文献28

引证文献2

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部