期刊文献+

抽象函数的两个性质

原文传递
导出
摘要 性质一一个偶函数的图象若关于直线x=a(a≠0)对称,则这个函数为周期函数,且2a为它的周期. 证明设f(x)是偶函数,因其图象关于y轴对称,所以,如果点(x,y)在图象上,则点(-x,y)也在图象上,即f(-x)=f(x).又因其图象关于直线x=a对称,所以点(x+2a,y)也应在图象上,即f(2a+x)=f(-x),于是f(x)=f(-x)=f(x+2a)对于一切x都成立,f(x)为周期函数,2a为它的周期.
作者 盘鹏飞
出处 《高中生(高考)》 2003年第10期4-4,共1页
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部