摘要
Rough set 理论已经在机器学习、从数据库中发现知识、决策支持和分析等方面得到了广泛应用。建立目标威胁模型,首先要挑选特征参数,这里采用知识约简方法选择目标的特征参数;利用神经网络理论建立了威胁模型,目标的威胁程度与特征参数的关系可通过神经网络的阀值和权值得到体现,实例表明该方法简单可行。
Rough set theory has been widely applied in machine learning knowledge discovery from databases and decision support and analysis etc.How to select the character parameters of target is the first place.The character parameters of target are selected based on reduction of knowledge.A threat estimation model is established by using neural network theory.The relationship among threat estimation with characteristic parameters is described through threshold and weight of neural networks.The method is illustrated...
出处
《弹箭与制导学报》
CSCD
北大核心
2003年第S1期207-210,共4页
Journal of Projectiles,Rockets,Missiles and Guidance
关键词
威胁判断
ROUGH
集
知识约简
神经网络
层次分析法
threat estimation
rough set
reduction of knowledge
neural network
analytic hierarchy process