期刊文献+

关于Black-Scholes期权定价模型的证明 被引量:4

Proof of Black-Scholes Option-Pricing Model
下载PDF
导出
摘要 lack-Scholes期权定价模型是20世纪70年代以来金融理论发展的最重要的基石,但是在各类文献中却几乎没有关于它的详细、准确的证明.本文将有关文献中出现的错误加以更正,并优化了证明过程,给出一个关于Black-Scholes期权定价模型严格的数学证明. Black-Scholes option-pricing model is the most important basis in the financial theory development since 1970s.But there is almost no detailed and accurate proof in all kinds of literatures.This paper corrects the errors in the literatures,and optimizes the course of proof.A strict mathematical proof is given about Black-Scholes option-pricing model in this paper.
出处 《鞍山师范学院学报》 2008年第4期1-4,共4页 Journal of Anshan Normal University
关键词 期权 期权定价模型 偏微分方程 Option Option-pricing model Partial differential equations
  • 相关文献

参考文献9

  • 1[1]Bachelier L.Theorie de la speculation[D].Paris:Sorbonne,1900.
  • 2[2]Sprenkle C.Warrant prices as indications of expectations[J].Yale Economic Essays,1962,(1):179-232.
  • 3[3]Boness A J.Elements of a theory of Stock-option value[J].Journal of Political Economy,1964,72(2):163-175.
  • 4[4]Samuelson P A.Rational theory of warrant pricing[J].Industrial Management Review,1965,(6):13-31.
  • 5[5]Black F,Scholes M.The pricing of options and corporate liabilities[J].Journal of Political Economy,1973,81(3):637-659.
  • 6[6]Merton R C.Theory d rational option pricing[J].Bell Journal of Economics and Management Science,1973,4(1):141-183.
  • 7[8]布里斯,贝莱拉赫,马伊,等.期权、期赁和特种衍生证券:理论、应用和实践[M].史树中译.北京:机械工业出版社,2002.
  • 8[9]Ito K.On stochastic differential equations[J].Memoirs of the American Mathematical Society,1951,4:1-51.
  • 9[10]Hull J C.Options,futures,and other derivatives[M].4th Edition.New Jersey:Prentice Hall Inc,2000.

同被引文献25

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部