期刊文献+

非线性Volterra-Stieltjes积分方程的解 被引量:1

Solvability of nonlinear Volterra-Stieltjes integral equation
下载PDF
导出
摘要 利用Schauder不动点定理和饱和解的理论,研究下列非线性Volterra- Stieltjes积分方程x(t)=h(t)+∫_0~t u(t,s,x(s))d_sg(t,s).在适当的条件下,证明了上述方程在[0,+∞)上有连续解. By using Schauder fixed point theorem and the theory of saturated solution the nonlinear Volterra-Stieltjes integral equation x(t)= h(t)+∫_0~t u(t,s,x(s))d_sg(t,s) is studied.It is proved that the equation has a solution x(t)∈[0,+∞) under some appropriate conditions.
作者 朱涛 李刚
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2008年第3期315-320,共6页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(10571150)
关键词 Volterra-Stieltjes积分 SCHAUDER不动点定理 饱和解 Volterra-Stieltjes integral Schauder fixed point theorem saturated solution
  • 相关文献

参考文献7

  • 1[1]Mingarelli A B.Volterra-Stieltjes Integral Equations and Generalied Ordinary Differential Expressions[M].Lecture Notes in Math 989,Berlin:Springer,1983.
  • 2[2]Bitzer C W.Stieltjes-Volterra integral equations[J].Illionis J Math,1970,14:434-451.
  • 3[3]Banas'J,O'Regan D.Volterra-Stieltjrs integral operators[J].Math Comput Modelling,2005,41:335-344.
  • 4[4]Banas'J,Caballero Mema J.Some properties of nonlinear Volterra-Stieltjes integral operators[J].Comput Math Appl,2005,49:1565-1573.
  • 5[5]Dunford N,Schwartz J T.Linear Operators[M].Leyden:Int Publ,1963.
  • 6[6]Natanson I P.Theory of Functions of a Real Variable[M].New York:Ungar Publishing Co,1960.
  • 7[7]Sikorski R.Real Function(in Polish)[M].Warszawa:PwN,1958.

同被引文献10

  • 1孙经先,张晓燕.凸幂凝聚算子的不动点定理及其对抽象半线性发展方程的应用[J].数学学报(中文版),2005,48(3):439-446. 被引量:19
  • 2王拉省,薛红,聂赞坎.向量值函数的Riemann-Stieltjes积分[J].数学的实践与认识,2007,37(7):129-137. 被引量:6
  • 3Mingarelli A B.Volterra-Stieltjes Integral Equations and Generalized Ordinary Differential Expressions[M].Berlin:Springer,1983.
  • 4Vaz P T,Dee S G.On a Volterra-Stieltjes Integral Equation[J].J Appl Math Stochastic Anal,1990,3:177-192.
  • 5Banas J,Dronka J.Integral Operators of Volterra-Stieltjes Type,Their Properties and Applications[J].Mathematical and Computer Modelling,2000,32:1321-1331.
  • 6Banaacutes J,Caballero Mena J.Some Properties of Nonlinear Volterra-stieltjes Integral Operators[J].Mathematical and Computer Modelling,2005,49:1565-1753.
  • 7Dinculeanu N.Vector Measures[M].Michigan:Peragmon Press,1967.
  • 8Bitzer C W.Stiehjes-Voherra Integral Equations[J].Illionis J Math,1970,14:434-451.
  • 9郭大钧.非线性分析中的半序方法[M].济南:山东科技出版社,2000..
  • 10史红波,闫超栋.Banach空间中非线性Volterra型积分方程解的存在性[J].西南师范大学学报(自然科学版),2009,34(3):36-39. 被引量:4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部