QCD Sum Rule External Field Approach and Vacuum Susceptibilities
QCD Sum Rule External Field Approach and Vacuum Susceptibilities
摘要
Based on QCD sum rule three-point and two-point external field formulas respectively, the vector vacuumsusceptibilities are calculated at the mean-field level in the framework of the global color symmetry model. It is shownthat the above two approaches of determination of the vector vacuum susceptibility may lead to different results. Thereason of this contradiction is discussed.
基金
国家自然科学基金
参考文献29
-
1[1]M. Shifman, A. Vainshtein, and V. Zakharov, Nucl. Phys.B147 (1979) 385.
-
2[2]L. Reinders, H. Rubinstein, and S. Yazaki, Phys. Rep.127 (1985) 1; S. Narison, QCD Spectral Sum Rules, WorldScientific, Singapore (1989), and the references therein.
-
3[3]B.L. Ioffe and A.V. Smilga, JETP Lett. 37 (1983) 298;B.L. Ioffe and A.V. Smilga, Nucl. Phys. B232 (1984) 109.
-
4[4]I.I. Balitsky and A.V. Yung, Phys. Lett. B129 (1983)328.
-
5[5]V.M. Belyaev and I.I. Kogan, Int. J. Mod. Phys. A8(1993) 153.
-
6[6]R.T. Cahill and C.D. Roberts, Phys. Rev. D32 (1985)2419; P.C. Tandy, Prog. Part. Nucl. Phys. 39 (1997) 117;R.T. Cahill and S.M. Gunner, Fiz. B7 (1998) 17, and the therein.
-
7[7]C.D. Roberts and A.G. Williams, Prog. Part. Nucl. Phys.33 (1994) 477, and the References therein.
-
8[8]C.D. Roberts, R.T. Cahill, and J. Praschiflca, Ann. Phys.(N. Y.) 188 (1988) 20.
-
9[9]T. Meissner, Phys. Lett. B405 (1997) 8.
-
10[10]L.S. Kisslinger and T. Meissner, Phys. Rev. C57 (1998)1528.
-
1ZONG Hong-Shi PING Jia-Lun YANG Hong-Ting LU Xiao-Fu WANG Fan.The π and Tensor Vacuum Susceptibilities from the Global Color Symmetry Model[J].Communications in Theoretical Physics,2002(7):75-80.
-
2ZONGHong-Shi,WuXiao-Hua,等.Pion Susceptibilities of the Vacuum in a Modified Global Colur Symmetry Model[J].Communications in Theoretical Physics,2001,35(4):451-454.
-
3张爱林.Light four-quark states and QCD sum rule[J].Chinese Physics C,2009,33(6):494-496.
-
4SHEN Jian He,ZHOU Zhe Yan,YU Zan Pin.Existence of Solutions of Boundary Value Problem Differential a Nonlinear Three-Point for Third-Order Ordinary Equations[J].Journal of Mathematical Research and Exposition,2009,29(1):57-64. 被引量:6
-
5高永馨.EXISTENCE OF SOLUTIONS OF THREE-POINT BOUNDARY VALUE PROBLEMS FOR NONLINEAR FOURTH ORDER DIFFERENTIAL EQUATION[J].Applied Mathematics and Mechanics(English Edition),1996,17(6):569-576.
-
6Tian Yu Ge Weigao.MULTIPLE POSITIVE SOLUTIONS OF A CLASS OF THREE-POINT SINGULAR NONLINEAR BOUNDARY VALUE PROBLEMS[J].Annals of Differential Equations,2005,21(3):417-420.
-
7Wang, YM,Guo, BY.ON NUMEROV SCHEME FOR NONLINEAR TWO-POINTS BOUNDARY VALUE PROBLEM[J].Journal of Computational Mathematics,1998,16(4):345-351. 被引量:9
-
8王信峰,葛玉安,曾庆黎.Solutions of Two-point BVP in Banach Spaces[J].Tsinghua Science and Technology,1998,3(4):1265-1269.
-
9石玉峰.SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS[J].Acta Mathematicae Applicatae Sinica,1999,15(4):409-417.
-
10Yao Qingliu.POSITIVE SOLUTIONS TO A SEMILINEAR SYSTEM OF SECOND-ORDER TWO-POINT BOUNDARY VALUE PROBLEMS[J].Annals of Differential Equations,2006,22(1):87-94. 被引量:1