Wigner Function:from Ensemble Average of Density Operator to Its One Matrix Element in Entangled Pure States
Wigner Function:from Ensemble Average of Density Operator to Its One Matrix Element in Entangled Pure States
摘要
We show that the Wigner function W = Tr(△ρ) (an ensemble average of the density operator ρ, △ is theWigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting fromquantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangledstates are defined in the enlarged Fock space with a fictitious freedom.
基金
国家自然科学基金
参考文献18
-
1[1]E. Wigner, Phys. Rev. 40 (1932) 749.
-
2[2]R.P. Feynman, Statistical Physics, W.A. Benjamin, (1972).
-
3[3]See e.g., M. Hillery, R.F. O'Connell,M.O. Scully, and E.P. Wigner, Phys. Rep. 106 (1984) 121-167; N.L. Balazs and B.K. Jennings, ibid. 104 (1984) 347.
-
4[4]G.S. Agarwal and E. Wolf, Phys. Rev. D2 (1970) 2161.
-
5[5]FAN Hong-Yi and RUAN Tu-Nan, Commun. Theor.Phys. (Beijing, China) 2 (1983) 1563; Commun. Theor. Phys. (Beijing, China) 3 (1984) 345; Hongyi Fan and H.R.Zaidi, Phys. Lett. A124 (1987) 303.
-
6[6]R.J. GIauber, Phys. Rev. 131 (1963) 2766; K.E. Cahill and R.J. Glauber, ibid. 177 (1969) 1857, 1882; J.R. Klauder and E.C.G. Sudarshan, Fundamentals of Quantum Optics, W.A. Benjamin, New York (1968).
-
7[7]A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47 (1935) 777.
-
8[8]Hongyi Fan and J.R. Klauder, Phys. Rev. A49 (1994) 704; Fan Hongyi and Chen Bozhan, Phys. Rev. A53 (1996) 2948; Fan Hongyi and Fan Yue, Phys. Rev. A54 (1996) 958.
-
9[9]FAN Hong-Yi and YE Xiong, Phys. Rev. A51 (1995) 3343.
-
10[10]Y. Takahashi and H. Umezawa, Collective Phenomena 2 (1975) 55; Memorial Issue for H. Umezawa, Int. J. Mod. Phys. B10 (1996), and the references therein.
-
1FANHong-Yi.Wigner Function:from Ensemble Average of Density Operator to Its Matrix Element in Entangled Pure States[J].Communications in Theoretical Physics,2002,37(5):533-536. 被引量:2
-
2孟祥国,王继锁,梁宝龙.New approach for deriving the exact time evolution of the density operator for a diffusive anharmonic oscillator and its Wigner distribution function[J].Chinese Physics B,2013,22(3):146-151.
-
3QI Bo.On the quantum master equation under feedback control[J].Science in China(Series F),2009,52(11):2133-2139. 被引量:2
-
4拿大创,王先萍,董萍,杨名,曹卓良.Generation of Arbitrary Pure States for Three-dimensional Motion of a Trapped Ion[J].Communications in Theoretical Physics,2010(4):755-758.
-
5王彤彤,范洪义.The Fourier slice transformation of the Wigner operator and the quantum tomogram of the density operator[J].Chinese Physics B,2012,21(3):218-221.
-
6SONG Tong-Qiang FAN Hong-Yi.Two-Mode Wigner Operator in 〈ξ| Representation and 〈γ| Representation[J].Communications in Theoretical Physics,2001(12):695-698.
-
7FAN Hong-Yi,WANG Ji-Suo.On Fermionic Entangled State Representation and Fermionic Entangled Wigner Operator[J].Communications in Theoretical Physics,2007,48(2X):245-248.
-
8LIU DongDong1,2 & DI YaoMin1 1 School of Physics & Electronic Engineering,Xuzhou Normal University,Xuzhou 221116,China,2 School of Mathematics & Physics Science,Xuzhou Institute of Technology,Xuzhou 221008,China.C^MC^N D-computable state[J].Science China(Physics,Mechanics & Astronomy),2008,51(9):1300-1307. 被引量:4
-
9郑能武.A NEW THEORETICAL MODEL FOR MANYELECTRON ATOM AND ION SYSTEMS (Ⅲ)[J].Chinese Science Bulletin,1988,33(11):916-920.
-
10范洪义,胡利云.New approach for deriving density operator for describing continuum photodetection process[J].Chinese Physics B,2009,18(3):1061-1064.