期刊文献+

Renormalizable Quantum Gauge Theory of Gravity 被引量:1

Renormalizable Quantum Gauge Theory of Gravity
下载PDF
导出
摘要 The quantum gravity is formulated based on the principle of local gauge invariance. The model discussedin this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton's theory of gravity. In the first-order approximation and for vacuum,it gives out Einstein's general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantumtheory.
作者 WU Ning
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第8期151-156,共6页 理论物理通讯(英文版)
  • 相关文献

参考文献15

  • 1[1]Isaac Newton, Mathematical Principles of Natural Philosophy, Camgridge University Press (1934).
  • 2[2]Albert Einstein, Annalen der Phys. 49 (1916) 769.
  • 3[3]Albert Einstein, Zeits. Math. und Phys. 62 (1913) 225.
  • 4[4]C.N. Yang and R.L. Mills, Phys. Rev. 96 (1954) 191.
  • 5[5]S. Glashow, Nucl. Phys. 22 (1961) 579.
  • 6[6]S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264.
  • 7[7]A. Salam, in Elementary Particle Theory, eds N. Svartho,Forlag, Stockholm (1968).
  • 8[8]Albert Einstein, Naeherungsweise Integration der Feldgleichungen der Gracitation, Preussische Akademie der Wissenschaften, Sitzungsberichte, Berlin (1916) p. 688.
  • 9[9]R. Utiyama, Phys. Rev. 101 (1956) 1597.
  • 10[10]A. Brodsky, D. Ivanenko, and G. Sokolik, JETPH 41(1961) 1307; Acta Phys. Hung. 14 (1962) 21.

同被引文献7

  • 1JOSHI A W.Elements of Group Theory for Physicists[M].2nd ed.New York:John Wiley & Sons,1977.
  • 2WYBOURNE B G.Classical Groups for Physicists[M].New York:Wiley,1974.
  • 3WIGNER E P.Group Theory and Its Applications to the Quantum Mechanics of Atomic Spectra[M].New York:Academic Press,1959.
  • 4FERRARI F.Chern-simons field theories with non-semisimple gauge group of symmetry[J].J Math Phys,2003,44:138-145.
  • 5HAMMA A,IONICIOIU R,ZANARDI P.Quantum entanglement in states generated by bilocal group algebras[J].Phys Rev A,2005,72:012324.
  • 6CASTELLANI L,CATENACCI R,DEBERNADI M,et al.Noncommutative de Rham cohomology of finite groups[J].Int J Mod Phys A,2004,19:1961-1986.
  • 7YOUNG Bing-lin.Introduction to Quantum Field Theories[M].Beijing:Science Press,1987.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部