期刊文献+

欧拉对称量预测波动Taylor涡流的紊态弥散

Chaotic Dispersion Prediction of Wavy Taylor-vortex Flow with Eulerian Symmetry Measures
下载PDF
导出
摘要 在完成数值计算的波动Taylor涡流中研究粒子传递时 ,可采用一个有效轴扩散系数去预测由紊态平流所产生的混合 ,而Dz 与两个对称偏差的积成正比 .一个是来自旋转对称的平均偏差 ,另一个是来自自由弯曲的平均偏差 .因为这些量直接由流场得到 ,称为欧拉对称量 .这样就得出 :在流动中的宏观传递性质可直接以流场和梯度来量化 。 In a recent investigation of particle transport in numerically computed wavy Taylor vortex flow. Rudman estimated an effective axial diffusion coefficient D z to characterize the enhanced mixing due to chaotic advection. It is found that D z is proportional to the product of two measures of symmetry deviation. The first is a measure of the average deviation of the flow from rotatonal symmetry and the second is a measure of the average deviation from flexion free flow (a flow where the curl of the vorticity is zero). Because these quantities are obtained directly from the velocity field, which are called Eulerian symmetry measures. The macroscopic transport behavior is shown in a flow and can be quantified directly in terms of the velocity field and its gradients, and the connection between Eulerian and Lagrangian pictures of transport is provided, a problem of fundamental and widespread interest.
出处 《华中科技大学学报(城市科学版)》 CAS 2002年第3期61-64,共4页 Journal of Huazhong University of Science and Technology
关键词 扩散系数 雷诺数 紊态平流 旋转对称 动力对称 欧拉对称量 effective diffusion coefficient Raynolds numbers chaotic advection rotation symmetry dynamical symmetry Eulerian symmetry measures
  • 相关文献

参考文献10

  • 1[1]Mezic,S.Wiggins.On the integrability and perturbation of three dimensional fluid flows with symmetry[J].J.Nonlinear Sci.,1994,(4):157.
  • 2[2]A.N.Yannacopoulos and others.Eulerian diagnostics for Lagrangian chaos in three dimensional Navier-Stokes flows[J].Phys.Rev.E,1998,57,482.
  • 3[3]M.Rundman.Mixing and particle dispersion in the wavy vortex regime of Taylor-Couette flow[J].AIChE J.,1998,44.
  • 4[4]D.S.Broomhead, S.C.Ryrie.Particle paths in mary vortices[J].Nonlinearity, 1988,(1):409.
  • 5[5]I.Mezic.Chaotic advection in bounded Navier-Stokes flows[J].J.Fluid Mech.,2001,347,431.
  • 6[6]J.E.Welch and others.The MAC method: a computing technique for solving viscous, incompressible, transient fluid-flow problems involving free surfaces[R].LANL Report LA-3425, Los Alamos, NM(1965).
  • 7[7]D.Coles.Transition in circular Couette flow[J].Fluid Mech.,1965,21,385.
  • 8[8]V.I.Arnold.Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluides pafaits Ann[J].Inst.Fourier, 1966,16, 316.
  • 9[9]G.Haller, I.Mezic.Reduction of three-dimensional, volume-preserving flow by symmetry[J].Nonlinearity, 1998, 11,319.
  • 10[10]V.Rom-Kedar and others.An analytical study of transport, mixing and chaos in an unsteady vortical flow [J].Fluid Mech., 1990, 214, 347.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部