期刊文献+

封闭腔内自然对流数值方法研究 被引量:23

Study of the Numerical Method for Solving the Natural Convection in an Enclosure
下载PDF
导出
摘要 在文献 [1]的基础上 ,将非定常流函数涡量方程的数值求解方法推广至非等距网格剖分 ,其中流函数一阶导数即速度项采用二阶精度公式 ,包含温度在内的离散方程组采用ADI迭代方法求得定常解 ,以封闭腔内自然对流为例 ,进行了不同瑞利数 (Ra)条件下数值试验 ,对Ra =10 6的计算进行了必要的处理 .计算结果表明 ,该数值方法推导简单 ,计算稳定 ,为采用K -ε模式计算封闭腔内层流到湍流的转捩打下基础 . Based on the paper , the method for solving the unsteady equations of stream and vorticity functions has been used to the case of non equidistance grid analysis. The second order acuracy finite difference is usd for the first partial derivatives of stream function(i.e.velocities). The ADI successive method is used for solving the equations which contain temperature equation to obtain the steady solutions. The laminar natural convection flow and heat transfer in an enclosure are simulated for various Rayleigh numbers, for Rayleigh number 10 6 some special methods are used, which are different from that of Rayleigh numbers 10 3 to 10 5. The calculation results are consistent with the results of the other numerical methods. The calculations are stable and lay a foundation for the simulations of the transition flow from laminar to turbulence in an enclosure with the K ε model.
出处 《华中科技大学学报(城市科学版)》 CAS 2002年第4期20-22,共3页 Journal of Huazhong University of Science and Technology
关键词 流函数涡量方程 腔内自然对流 非等距网格 时间相关法 equations of stream and vorticity functions natural convection in an enclosure non equidistance grid analysis unsteady numerical simulations
  • 相关文献

参考文献3

  • 1李光正.非定常流函数涡量方程的一种数值解法的研究[J].力学学报,1999,31(1):10-20. 被引量:21
  • 2[2]Joshua Y choo, Schultz DH. A stable high-order method for the heated cavity problem[J].International J. for Numerical Methods in Fluids,1992,15:1313-1332.
  • 3[3]John M House and others. Effect of a centered conducting body on natural convection heat transfer in an enclosure[J]. Numerical Heat Transfer,1990,18:213-225.

二级参考文献1

  • 1Shiralkar G S,Trans ASME,1981年,103卷,226页

共引文献20

同被引文献113

引证文献23

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部