1William B F, et al. Information Retrieval:Data Structures and Algorithms.[s.l]:Prentoce-Hall.1992.
2Hall H, Weiderman N. The Evaluation Problem in Relevance Feedback.Report No.ISR-12 to the National Scierce Foundation from Department of Computer Science.Comell Universily.1967.6
3Ide E.Relevance Feedback in and Automatic Documenl Retrieval System.Report No.ISR-15 to National Science Foandation from Department of Computer Science.Comell University.1969.1
4Salton G.Evaluation Problems in Interaotive Information Retrieval.Information Storage and Retrieval .1970, 6 (1): 29-44
5Salton G. The SMART Retrieval System. Englewond Cliffs,N J:Prentice Hall.Inc.1971.
6Jones K S, A Statistical Interpretation of Term Specificity and lts Application in Retrieval Documentation.1972.28(1):11-21.
7Robertson S E.Jones K S.Relevance Weighting of Search Terms.J.of the American Society for Information Science.1976, 27 (3) 129-146
8Jones K S. Experiments in Relevance Weighting of Search Terms.Information Processing and Management. 1979, 15 (13): 133-144
9Croft W B. Experiments with Representation in a Document Retrieval System.Information Technology:Research and Development,1983,2(1):1-21
10Berry M W, Browne M, Understanding Search Engines Mathematical Modeling and Text Retrieval[s.I]:University of Tennessee
2Yang Y.,Pedersen J.P.A Comparative Study on Feature Selection in Text Categorization[J]. Proceedings ofthe Fourteenth International Conference on Machine Learning, 1997,412 - 420.
3Jason D. M. Bennie. Improving multi - class text classification with naive hayes[M].Master's thesis, Massachusetts Institute of Technology, 2001.48.