期刊文献+

Experimental Study on Hard Turning Hardened GCr15 Steel with PCBN Tool 被引量:4

Experimental Study on Hard Turning Hardened GCr15 Steel with PCBN Tool
下载PDF
导出
摘要 This paper discusses experimental results of turnin g experiments on GCr15 bearing steel hardened to 60~64 HRC. The objective was to d etermine the effect of the cutting parameters on cutting force, chip morphology and resultant workpiece surface quality, more specifically surface texture, micr ostructure alterations, changes in microhardness and residual stresses distribut ion. The changing rules of the main cutting force was shown in this paper which feature a increasing tendency with the improvement of the workpiece hardness wit hin the cutting parameter scope. The rule of cutting force changing with the wor kpiece hardness is accord to the traditional metal cutting theory. Stress value decrease with increasing cutting speed and workpiece hardness. The comparison of the machined surface roughness and harden layer depth of machined surface for d ifferent hardness is shown in Fig.1. The machined surface roughness is the worst when the workpiece hardness is around 50HRC. When the workpiece hardness is ove r 50HRC, the surface roughness value shows a descending tendency with the additi on hardness. The machined superficial harden layer depth shows an increasing ten dency with the improvement of the workpiece hardness. When the workpiece hardnes s is 50HRC the machined superficial harden layer depth is tiptop. When the workp iece hardness is over 50HRC the depth changes little with the addition of workpi ece hardness. The remnant stress status of the machined surface is shown in Fig. 2, which is press stress status both in surface and in base for less cutting par ameters under two kinds of cutting condition. But experiment results show that t ensile stress can be produced under uncomfortable cutting conditions. The deform ation created by the chip formation is reduced whereduce with [TPP126A,+35mm77mm,Z,PY#]Depth from surface (μm) ■ v=200m/min,f=0.24mm/r,ap=0.8mm,60HRC ● v=200m/min,f=0.15mm/r,ap=0.5mm,60HRC Fig.1 The subsurface residual stress between the two experimentsHardness (HRC) Fig.2 The surface finish vs. workpiece hardness the workpiece hardness is improved. This paper discusses experimental results of turnin g experiments on GCr15 bearing steel hardened to 60~64 HRC. The objective was to d etermine the effect of the cutting parameters on cutting force, chip morphology and resultant workpiece surface quality, more specifically surface texture, micr ostructure alterations, changes in microhardness and residual stresses distribut ion. The changing rules of the main cutting force was shown in this paper which feature a increasing tendency with the improvement ...
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期125-126,共2页 Journal of Xiamen University:Natural Science
基金 ProjectsupportedbyNationalScienceFoundationofChina (5 9975 0 2 6)
关键词 hard turning surface integrity PCBN tool harde ned bearing steel hard turning surface integrity PCBN tool harde ned bearing steel
  • 相关文献

同被引文献28

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部