期刊文献+

基于神经状态空间的非线性系统建模研究

An Approach of Nonlinear System Modeling Based on Neural State Space Model
下载PDF
导出
摘要 提出了一种基于神经状态空间的非线性系统建模方法。神经状态空间(NNSP)具有系统的拟线性特性,许多线性系统控制器设计方法均可以扩展到 NNSP模型。本文采用了增广卡尔曼滤波方法进行神经状态空间的参数辨识,高阶校验模型用于验证非线性系统神经状态空间的模型的有效性 。将本法应用于典型的化学过程的建模,结果表明本方法正确有效。 In this paper, an approach of nonlinear system modeling based on neural state space model is proposed. The neural state space model is of the quasi-linear characteristics of system. Many linear system controller design approach, therefore, can be extended to apply to the NNSP models. The EKF approach is adopted for parameter identification of neural state space models and a high-order correction method is then applied to test the validity of the neural state space model of nonlinear systems. The application of this method to dynamic modeling of typical chemical processes shows that the presented approach is effective.
出处 《系统仿真学报》 CAS CSCD 2001年第z1期12-14,共3页 Journal of System Simulation
基金 受国家自然科学基金(69974107) 湖北省自然科学基金(99JJ015) 国家留学基金委回国人员科研启动基金 高等学校国家重点实验室和教育部重点实验室访问学者基金 高等学校骨干教师资助计划资助。
关键词 神经状态空间模型 增广Kalman滤波 连续搅拌釜式反应器 (CSTR) neural state space model extended Kalman filter continuous stirred tank reactor (CSTR)
  • 相关文献

参考文献12

  • 1[1]Lewis F L, Parisini(ed). Neural network feedback control with guaranteed stability [J]. Int J Control, 1998, 70(3): 337-339.
  • 2[2]Suykens J A K, DeMoor B, Vandewalle J. Nonlinear system identifi cation using neural state space models, applications to robust control design [J]. Int J Control, 1995, 62(1): 129-152.
  • 3[3]Zhao H, Guiver J, Neelakantan R, Biegler L T. A Nonlinear Industrial Model Predictive Controller Using Integrated PLS and Neural Net State Space Model [A]. Proc 14th IFAC, Vol N [C]. 13-18.
  • 4[4]Hong Zhao, John Guiver, Guillermo Sentoni, Sandeep Lal. An Identification Approach for Industrial Nonlinear Model Predictive Control [A]. Proc 14th IFAC, Vol N [C]. 205-210.
  • 5[5]Pavel Zite, et al. Neural Network Processing of Observer Generated Residuals in Fault Diagnosis of Time Delay Systems [A]. Proc 14th IFAC, Vol P [C]. 79-84.
  • 6[6]Liang Jin, Gupta M M, Nikiforuk P N. Dynamic Recurrent Neural Networks for Approximation of Nonlinear Systems [A]. Proc 14th IFAC, Vol K [C]. 45-50.
  • 7[7]Wang Y J, Fernholz G, Engell S. A New Pseudolinear Neural Network for a Kind of Nonlinear Dynamic Systems Modeling [A]. Proc International Workshop on Advanced Black-Box Techniques for Nonlinear Modeling [C]. Leuven, Belgium, 8-10, July, 1998.184-189.
  • 8[8]Friendland B. Advanced Control System Design [M]. Printice-hall, Englewood Cliffs, NJ, Chapter 4, 1996.
  • 9[9]Behera L, Gopal M,. Chaudhury S. Inversion of RBF networks and applications to adaptive control of nonlinear systems [J]. IEE Proceedings D, Control Theory and Application, 1995, 142(6): 617-624.
  • 10[10]Billings S A, Voon W S F. Correlation-based model validity tests for nonlinear models [J]. Int J Contr, 1986, 44: 235-244.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部