期刊文献+

有多重最优解的流水型两工序排序问题研究 被引量:2

The Study of Flow-line Two-stage Production Schedules with Infinite Optimal Solutions
下载PDF
导出
摘要 本文指出了著名的约翰逊 (Johnson)定理只能找到两工序排序问题的一个最优解 ,不能求出有多重最优解的两工序排序问题的所有最优解。本文给出了一种寻找两工序排序问题多重最优解的计算方法 ,并举例对该方法进行了验证。 In this paper we show that the well-known Johnson theorem only can find only one optimal solution of flowline two-stage production schedules. In fact some flow-line two-stage production shcedules have infinite optimal solutions. A new method of finding all optimal solutions of the flowline two-stage production schedules is given. The validity of the method is tested and verified by an example finally.
出处 《管理工程学报》 CSSCI 2001年第1期29-31,共3页 Journal of Industrial Engineering and Engineering Management
关键词 排序 约翰逊(Johnson)定理 多重最优解 动态规划 production schedules Johnson theorem infinite optimal solutions dynamic programming
  • 相关文献

参考文献2

  • 1[2][日]人见胜人,武振业译.生产系统工程学[M].成都:西南交通大学出版社,1992.138~139.
  • 2[3]<运筹学>教材编写组编.运筹学(第二版)[M].北京:清华大学出版社,1990.242~244.

同被引文献20

  • 1贾大龙,王红蕾.随机装配线平衡的仿真模型[J].管理工程学报,1994,8(4):232-237. 被引量:6
  • 2Johnson S. Optimal two-and three-stage production schedules with setup times included [ J ]. Naval Research Logistics Quarterly, 1954, 1:61 -67.
  • 3Garey MR, Johnson DS, Sethi R. The complexity of flowshop and jobshop scheduling [ J ]. Mathematics of Operations Research, 1976, 1 (2) : 117 - 129.
  • 4Nagano MS, Ruiz R, Lorena LAN. A constructive geneticalgorithm for permutation flowshop scheduling [ J]. Computers and Industrial Engineering, 2008, 55 : 195 - 207.
  • 5Jarboui B, Ibrahim S, Siarry P, et al. A combinatorial particle swarm optimisation for solving permutation flowshop problems [ J]. Computers and Industrial Engineering, 2008, 54:526 - 538.
  • 6Kalezynski PJ, Kamburowski J. An improved NEH heuristic to minimize makespan in permutation flow shops [ J]. Computers and Operations Research, 2008, 35 (9) : 3001 - 3008.
  • 7Gilmore PC, Gomory RE. Sequencing a one-state variable machine: A solvable case of the traveling salesman problem [ J]. Operations Research, 1964, 12 (5) : 655 - 679.
  • 8Papadimitriou C, Kanellakis P. Flowshop scheduling with limited temporary storage [J]. Journal of the ACM, 1980, 27: 533- 549.
  • 9Rock H. The three machine no-wait flowshop is NP complete [J]. Journal of the ACM , 1984, 31:336 -345.
  • 10Yang DL, Chern MS. A two-machine flowshop sequencing problem with limited waiting time constraints [J]. Computers and Industrial Engineering, 1995, 28( 1): 63-70.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部