期刊文献+

行为NA的随机变量阵列加权和的完全收敛性 被引量:2

Complete Convergence of Weighted Sums for Arrays of Rowwise NA Random Variables
下载PDF
导出
摘要 {Xni,1≤i≤n,n∈N}是行为NA的随机变量阵列,且一致有界于随机变量X,p>0,E|X|2p<a2ni=o(1∞,EXni=0(1≤i≤n,n∈N),{ani,1≤i≤n,n∈N}是实数阵列,max|ani|=O(1logn),n1/p),∑n1≤i≤ni=1C0,推广了Stout及Taylor等相应的结果. Let {X(ni),1≤i≤n,n∈N} be an arrays of rowwise NA random variables,such that EX(ni)=0,1≤i≤n,n∈N,and uniformly bounded by a random variable X,E|X|^(2p)<∞,p>0,Let{a(ni),1≤i≤n,n∈N} be an arrays of real numbers such that (max)1≤i≤n|a(ni)|=O(1n^(1/p)) and '∑ni=1a^2(ni)=o'(1logn),then '∑ni=1a(ni)X(ni)'→0 completely,which extend the theorem of Stout and Taylor.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2004年第3期287-290,共4页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金(100710719 10071058) 湖南省教育厅科研基金(03C094)资助项目
关键词 行为NA的随机变量阵列 完全收敛 一致有界于随机变量 array of rowwise NA random variables complete convergence uniformly bounded by arandom variable
  • 相关文献

参考文献5

  • 1Taylor R L,Patterson R F,Bozorgnia A.A Strong Law of Large Numbers for Arrays of Rowwise Negatively Dependent Random Variables[J].Stoch Anal and Appl,2002,20:643-656.
  • 2Matula P.A Note on the Almost Sure Convergence of Sums of Negative Dependent Random Variables[J].Statist Probab Lett,1992,15:209-213.
  • 3苏淳.NA序列的一个Hsu-Robbins型定理[J].科学通报,1996,41(2):106-110. 被引量:20
  • 4Joag-dev K,Proschan F. Negative Association of Random Variables with Application[J].Ann Statist,1983,11:286-295.
  • 5Stout W F.Almost Sure Convergence[M].New York:Academic Press,1974.

二级参考文献1

  • 1Hsu P L,Proc Natl Acad Sci USA,1947年,33卷,25页

共引文献19

同被引文献16

  • 1邱德华,甘师信.行为NA的随机变量阵列的完全收敛性[J].大学数学,2004,20(5):40-44. 被引量:2
  • 2邱德华,甘师信.行为NA的随机变量阵列加权和的完全收敛性(Ⅱ)[J].应用数学,2006,19(2):225-230. 被引量:11
  • 3Joag'-Dev K, Proschan F. Negative association of random variables with application[J]. Ann. Statist. ,1983,11:286-295.
  • 4Matula P. Anote on the almost sure convergence of sums of negative dependent random variables[J].Statist. Prob. Lett., 1992,15:209-213.
  • 5Su C. A theorem of Hsu Robbons type for negatively associated sequence[J]. Chinese Science Bulletin,1996,41(2) :106-110.
  • 6Taylor R L, Patterson R F,Bozorgnia A. A strong law of large numbers for arrays of rowwise negatively dependent random variables[J]. Stoch. Anal. Appl. , 2002,20 : 643-656.
  • 7Hu T C,Chang I-I C. Complete convergence and the law of large numbers for arrays of random elements[J]. Nonlinear analysis, Theory, Methods and Applications, 1997,30 (7) : 4257-4266.
  • 8Hu T C, Taylor R L. On the strong law for arrays and for the bootstrap mean and variance[J]. 1997, 20(2):375-382.
  • 9Joag-Dev, K., Prosehan, F., Negative association of random variables with application[ J], Ann Statist., 1983,11 : 286- 295.
  • 10Taylor, R. L., Hv; T. C., Strong laws of large numbers for arrays of rowwise independent random elements, Internal.[J]. Moth. And Moth. Sci. , 1987,10:804- 814.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部