期刊文献+

基于凸锥分析的低概率检测方法研究

Research of Low Probability Detection Based on Convex Cone Analysis
下载PDF
导出
摘要 低概率检测 (LPD)方法利用图像互相关矩阵的特征向量 ,在已知目标先验信息的情况下检测图像中小概率目标 .但是 ,由于噪声的影响以及特征向量之间正交约束性 ,使其检测效果不理想 .本文提出了利用凸锥分析(CCA)来改善LPD的方法 ;它避免由特征向量的正交性约束导致的虚警概率较高的不良结果 ,同时消除图像中的条带噪声的影响 .最后 ,结合OMIS数据分析了这种方法检测小目标的效果 . Low probability detection (LPD) is an approach for hyperspectral imagery analysis;it use the eigenvectors of the imagery's correlation matrix in detecting small targets.Unfortunately,bacause of noise and the orthogonality constraints among the eigenvectors,the results of detection are non ideal.In this paper,we use the method of Convex Cone Analysis (CCA) to improve the detectability of LPD and to eliminate the stripe noise.The experimental results are given by applying the method to the data from Operative Modulor Imaging Spectrometer (OMIS) system.
出处 《电子学报》 EI CAS CSCD 北大核心 2001年第z1期1856-1859,共4页 Acta Electronica Sinica
关键词 超光谱 低概率检测 凸锥分析 hyperspectral low probability detection convex cone analysis
  • 相关文献

参考文献5

  • 1[1]薛永祺,王建宇.实用型模块化机载成像光谱仪[M].信息获取与处理技术,1999:43-46.
  • 2[3]Marcus Stavos Stefanou,Richard C Olsen,Herschel H Loomis.Signal perspectives of hyperspectral imagery analysis techniques [R].1998,AD-A333:254.
  • 3[4]Joseph C Harsanyi,Chein-I Chang.Hyperspectral image classifacation and dimensionality reduction:an orthogonal subspace projection approach [J].IEEE Trans.on Geoscience and Remote Sensing,1994:779-785.
  • 4[5]Agustin Ifarraguerri,Chein-I Chang.Multispectral and hyperspectral image analysis with convex cones [J].IEEE Trans.on Geoscience and Remote Sensing,1999:756-770.
  • 5[6]Te-Ming Tu,Chin-Hsing Chen.A noise subspace projection approach to target signature detection and extraction in an unkown background for hypespectral images [J].IEEE Trans.on Geoscience and Remote Sensing,1998:171-181.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部