期刊文献+

Multisoliton Solutions of the (2+1)-Dimensional KdV Equation 被引量:1

Multisoliton Solutions of the (2+1)-Dimensional KdV Equation
下载PDF
导出
摘要 Using the extension homogeneous balance method,we have obtained some new special types of soliton solutions of the (2+1)-dimensional KdV equation.Starting from the homogeneous balance method,one can obtain a nonlinear transformation to simple (2+1)-dimensional KdV equation into a linear partial differential equation and two bilinear partial differential equations.Usually,one can obtain only a kind of soliton-like solutions.In this letter,we find further some special types of the multisoliton solutions from the linear and bilinear partial differential equations.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2001年第11期523-524,共2页 理论物理通讯(英文版)
  • 相关文献

参考文献14

  • 1[1]H.A.Haus and W.S.Wong,Rev.Mod.Phys.68 (1996)423.
  • 2[2]M.Boiti,J.J.P.Leon,L.Martina and F.Pempinelli,Phys.Lett.A132 (1998) 432.
  • 3[3]A.S.Fokas and P.M.Santini,Physica D44 (1990) 99;J.Hietarinta and R.Hirota,Phys.Lett.A145 (1990) 237.
  • 4[4]J.Hietarinta,Phys.Lett.A149 (1990) 113.
  • 5[5]R.Radha and M.Lakshmanan,J.Math.Phys.35 (1994)4746.
  • 6[6]R.Radha and M.Lakshmanan,Phys.Lett.A197 (1995)7.
  • 7[7]R.Radha and M.Lakshmanan,J.Math.Phys.38 (1997)292.
  • 8[8]S.Y.LOU,J.Phys.A:Math.Gen.28 (1995) 7227.
  • 9[9]S.Y.LOU,Commun.Theor.Phys.(Beijing,China) 26(1996) 487.
  • 10[10]P.Boiti,J.J.P.Leon,M.Manna and F.Pempinelli,Inverse Problem 2 (1986) 271;ibid.3 (1987) 371.

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部