期刊文献+

Obtain Lower-Dimensional Turbulence Systems from Higher-Dimensional Lax Integrable Models

Obtain Lower-Dimensional Turbulence Systems from Higher-Dimensional Lax Integrable Models
下载PDF
导出
摘要 Taking the well known (1-+l)-dimensional turbulence system,the Korteweg de-Vries Burgers equation,as a special example,we show that some types of lower-dimensional turbulence systems may be derived from some higherdimensional Lax integrable models,say,the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation.On the other hand,using the Lax pair of the original higher-dimensional integrable model(s),we may obtain higher-dimensional Lax pair(s) for a lower-dimensional turbulence system.
作者 LOU Sen-Yue
机构地区 Physics Department
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2001年第11期550-552,共3页 理论物理通讯(英文版)
基金 国家杰出青年科学基金,the Research Fund for the Doctoral Program of Higher Education of China,国家自然科学基金
  • 相关文献

参考文献15

  • 1[1]G.I.Stegeman and M.Segev,Science 286 (1999) 1518;Y.S.Kivshar and B.A.Malomend,Rev.Mod.Phys.61(1989) 765;AG.Abanov and P.B.Wiegmann,Phys.Rev.Lett.86 (2001) 1319;Q.P.Liu and M.Manas,Phys.Lett.A239 (1998) 159;X.B.Hu and H.W.Tam,Phys.Lett.A276 (2000) 30;G.X.HUANG,S.D.ZHANG and B.B.HU,Phys.Rev.B58 (1998) 9194;S.Y.LOU,J.Phys.A:Math.Gen.29 (1996) 5989;Commun.Theor.Phys.(Beijing,Chian) 33 (2000) 7;Commun.Theor.Phys.(Beijing,China) 26 (1996) 487;Chin.Phys.Lett.16 (1999) 659;S.Y.LOU and G.HUANG,Mod.Phys.Lett.B9 (1995)1231.
  • 2[2]J.P.Gollub and M.C.Cross,Nature 404 (2000) 710;R.A.Jalabert and H.M.Pastawski,Phys.Rev.Lett.86 (2001)2490;M.van Hecke and M.Howard,Phys.Rev.Lett.86(2001) 2018;G.Hu,Y.Zhang,H.A.Cerdeira and S.G.Chen,Phys.Rev.Left.85 (2000) 3377;S.Y.LOU,J.YU,J.LIN,G.HUANG and J.K.ZHANG,Mod.Phys.Lett.B10 (1996) 11.
  • 3[3]S.Y.LOU,Chaos in Soliton Systems and Special Lax Pairs for Chaos System,preprint (2001).
  • 4[4]F.W.Lorenz and J.Atomos,Science 20 (1963) 130.
  • 5[5]A.Davey and K.Stewartson,Proc.R.Soc.London A338(1974) 17.
  • 6[6]M.Boiti,J.J.P.Leon,M.Manna and F.Pempinelli,Inverse Problem 2 (1986) 271.
  • 7[7]Y.Nakamura,H.Bailung and P.K.Shukla,Phys.Rev.Lett.83 (1999) 1602;E.P.Raposo and D.Bazeia,Phys.Lett.A253 (1999) 151;G.Karch,Nonlinear Analysis:Theory Methods and Applications 35 (1999) 199.
  • 8[8]S.D.LIU and S.K.LIU,Scientia Sinica A9 (1991) 938 (in Chinese);N.Antar and H.Demiray,Int.J.Engineering Sci.37 (1999) 1859.
  • 9[9]S.LOU and X.B.HU,J.Math.Phys.38 (1997) 6401.
  • 10[10]R.Hirota,Phys.Rev.Lett.27 (1971) 1192.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部