New Approach for Calculating Wigner Functions of Generalized Two-Mode Squeezed State and Squeezed Number State via Entangled State Representation
New Approach for Calculating Wigner Functions of Generalized Two-Mode Squeezed State and Squeezed Number State via Entangled State Representation
摘要
We construct the generalized squeezed vacuum state by virtue of the entangled state 〈η| [Fan Hongyi and J.R. Klauder, Phys. Rev. A47 (1994) 777] and derive the quantum fluctuation of the two-mode quadrature operators.We then calculate Wigner functions of the two-mode squeezed number states and generalized squeezing vacuum state in literature before.
参考文献20
-
1[7]FAN Hong-Yi, Commun. Theor. Phys. (Beijing, China)34 (2000) 341.
-
2[8]Hong-Yi FAN and Yue FAN, Mod. Phys. Lett. B14(2000) 967.
-
3[9]Hong-Yi FAN and Yue FAN, Phys. Rev. A54 (1996) 558.
-
4[10]Hong-Yi FAN, Commun. Theor. Phys. (Beijing, China)35 (2001) 96.
-
5[11]Fan Hong-Yi, H.R. Zaidi and J.R. Klauder, Phys. Rev.D35 (1987) 1831; Hong-Yi FAN, Phys. Lett. A126 (1987)145; Hong-Yi FAN and Liang-Shi LI, Phys. Lett. A212(1996) 188.
-
6[12]FAN Hong-Yi and YE Xiong, Phys. Rev. A51 (1995)3343.
-
7[13]J. Clausen, T. Opatrny and D.G. Welsch, Phys. Rev. A62(2000) 042308.
-
8[14]E. Wigner, Phys. Rev. 40 (1932) 749.
-
9[15]K. Vogel and H. Risken, Phys. Rev. A40 (1989) 2847.
-
10[16]D.T. Smithey, M. Beck and M.G. Raymer, Phys. Rev.Lett. 70 (1993) 1244.
-
1张智明.A Simple Scheme for Directly Measuring the Wigner Functions of Cavity Fields[J].Chinese Physics Letters,2003,20(2):227-229.
-
2张晓燕,王继锁,孟祥国,苏杰.Wigner functions and tomograms of the even and odd binomial states[J].Chinese Physics B,2009,18(2):604-610.
-
3JING Si-Cong LIN Bing-Sheng.A Note on Wigner Functions and *-Genvalue Equation[J].Communications in Theoretical Physics,2009,51(4):605-608.
-
4JINShuo,XIEBing-Hao,ZHANGHong-Biao,GEMo-Lin.Squeezed Number State Solutions of Generalized Two-Mode Harmonic Oscillators Model: an Algebraic Approach[J].Communications in Theoretical Physics,2004,42(5X):681-688.
-
5梁国栋,余晓敏,余超凡.Time Evolution,Dynamical Quantum Fluctuation and High-Order Squeezing Feature in Polariton System——Ⅰ[J].Communications in Theoretical Physics,2010(11):913-924.
-
6HENG Tai-Hua JING Si-Cong.Generalized Wigner Functions for Damped Systems in Deformation Quantization[J].Communications in Theoretical Physics,2007,48(2X):255-260.
-
7衡太骅,李平,井思聪.Modified Form of Wigner Functions for Non-Hamiltonian Systems[J].Chinese Physics Letters,2007,24(3):592-595. 被引量:2
-
8陈慧娜,刘金明.Teleportation of a two-particle four-component squeezed vacuum state by linear optical elements[J].Chinese Optics Letters,2009,7(5):440-442. 被引量:3
-
9YANGWei-Min JINGSi-Cong.Parabose Squeezed Operator and Its Applications[J].Communications in Theoretical Physics,2001,35(3):283-287.
-
10文晶姬,Yeon Kyu-Hwang,王洪福,张寿.Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED[J].Chinese Physics B,2014,23(4):98-101. 被引量:1