期刊文献+

The Homotopic Probability Distribution and the Partition Function for the Entangled System Around a Ribbon Segment Chain

The Homotopic Probability Distribution and the Partition Function for the Entangled System Around a Ribbon Segment Chain
下载PDF
导出
摘要 Using the Feynman's path integral with topological constraints arising from the presence of one singular line, we find the homotopic probability distribution PnL for the winding number n and the partition function PL of the entangled system around a ribbon segment chain. We find that when the width of the ribbon segment chain 2a increases,the partition function exponentially decreases, whereas the free energy increases an amount, which is proportional to the square of the width. When the width tends to zero we obtain the same results as those of a single chain with one singular point.
机构地区 Department of Physics
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2001年第12期691-694,共4页 理论物理通讯(英文版)
  • 相关文献

参考文献14

  • 1[1]H. Kleinert, Path Integrals in Quantum Mechanics,Statistics and Polymer Physics, World Scientific, London (1990).
  • 2[2]F.W. Wiegel, Introduction to Path-Integral Methods in Physics and Polymer Science, World Scientific, Singapore (1986).
  • 3[3]V. Tanikella and A. Inomata, Phys. Lett. A87 (1982) 196.
  • 4[4]F.W. Wiegel, Physica A109 (1981) 609.
  • 5[5]N. Gresh, P. Claverie and A. Pullman, Theor. Chim. Acta 66 (1984) 1.
  • 6[6]A. Pullman, C. Zakrzewska and D. Parahia, Int. J. Quantum Chem. 16 (1979) 395.
  • 7[7]K.F. Freed, J. Chem. Phys. 54 (1971) 1453.
  • 8[8]K.X. Chen, N. Gresh and A. Pullman, Nucleic Acids Res.14 (1986) 3799.
  • 9[9]S.W. Qian, Z.Y. Gu and G.Q. Xie, J. Phys. A30 (1997)1273.
  • 10[10]Z.Y. Gu and S.W. Qian, J. Phys. A21 (1988) 2573; erratum J. Phys. A23 (1990) 4183.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部