期刊文献+

Multistable Spatiotemporal Dynamics in the Driven Frenkel-Kontorova Lattice 被引量:1

Multistable Spatiotemporal Dynamics in the Driven Frenkel-Kontorova Lattice
下载PDF
导出
摘要 Spatiotemporal dynamics of the damped dc-driven Frenkel-Kontorova lattice is studied. Multistable topologies are shown. Intermittency of the dynamical contraction factor is found, and this behavior is a consequence of the collisions of kinks and antikinks. Fast kinks and antikinks are unstable. The transition from the localized kink to the whirling mode is found to be a temporal bifurcation cascade of generations of kink-antikink pairs and the collision-induced avalanche dynamics. Noise-induced topology transition is observed and discussed.
机构地区 Department of Physics
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2001年第7期37-43,共7页 理论物理通讯(英文版)
基金 国家自然科学基金,国家重点基础研究发展计划(973计划),教育部大学校科研和教改项目
  • 相关文献

参考文献18

  • 1[1]S.H. Strogatz, Nonlinear Dynamics and Chaos, AddisonWesley, Reading, MV (1994).
  • 2[2]A.T. Winfree, The Geometry of Biological Time, Springer, Berlin (1980).
  • 3[3]Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin (1984).
  • 4[4]J. Frenkel and T. Kontorova, Phys. Z. Sowjet. 13 (1938)1.
  • 5[5]L. Floria and J. Mazo, Adv. Phys. 45 (1996) 505.
  • 6[6]D.S. Fisher, Phys. Rev. Lett. 50 (1983) 1486; Phys. Rev.B31 (1985) 1396; L. Sneddon and K. Cox, Phys. Rev.Lett. 58 (1987) 1903; L. Sneddon and S. Liu, Phys. Rev.B43 (1991) 5798; S. Coppersmith, Phys. Rev. B30 (1984)410; S. Coppersmith and D. Fisher, Phys. Rev. A38(1988) 6338.
  • 7[7]B.N.J. Persson and E. Tosatti, Physics of Sliding Fric.tion, Kluwer Academic Publishers, Netherlands (1996);Y. Braiman, F. Family and H.G.E. Hentschel, Phys. Rev.E53 (1996) R3005.
  • 8[8]S. Watanabe, H. Zant, S. Strogatz and T. Orlando, Physica D97 (1996) 429; A. Ustinov, M. Cirillo and B. Malomed, Phys. Rev. B47 (1993) 8357; ibid. 51 (1995) 3081;L. Floria and F. Falo, Phys. Rev. Lett. 68 (1992) 2713;B.R. Trees and N. Hussain, Phys. Rev. E61 (2000) 6415.
  • 9[9]W. Selke, Phys. Rep. 170 (1988) 213.
  • 10[10]S. Aubry, Phys. Rep. 103 (1984) 12; M. Peyrard and S.Aubry, J. Phys. C16 (1983) 1593.

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部