期刊文献+

等差数列中的连续方幂

Continued Powers in Arithmetic Progressions
下载PDF
导出
摘要 设n是大于 2的正整数 ,本文证明了 :等差数列中至多有 2个连续的n次方幂 . Let n be a positive integer with n>2. In this paper we prove that Every arithmetic progression contains at most two continued n-th powers.
作者 钟莉萍
出处 《湛江师范学院学报》 2001年第3期3-4,共2页 Journal of Zhanjiang Normal College
关键词 等差数列 方幂 FERMAT方程 arithmetic progression power Fermat's equation
  • 相关文献

参考文献5

  • 1[1]Dickson L E. History of the theory of numbers[ M ]. Washington: CarnegieInst, 1920.
  • 2[2]Erdos P, Selfridge J L . The product of consecutive integers is never a power [J]. Illinois J Math, 1975, 19:292 - 301.
  • 3[3]Shorey T N, Tijdeman R. Perfect powers in arithmetical progression Ⅱ [ J]. Compositio Math, 1992,82:107 - 117.
  • 4[4]Mordell L J. Diophantine equations [M]. London: Academic Press, 1969.
  • 5[5]Darmon H, Merel L. Winding quotients and some variants of Fermat's Last Theorem [J]. J Reine Angew Math, 1997,490:81 - 100.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部