期刊文献+

Pollard p-1因子分解的DNA计算机算法 被引量:1

DNA Algorithm for Factoring Integers Based on the Pollard p-1 Method
下载PDF
导出
摘要 如何有效地对大整数进行因子分解是数学上的一个难题.给出了基于分子生物技术的因子分解问题的DNA计算机算法.算法以Pollardp-1算法为基础,利用DNA分子生物操作完成加、减、乘、除运算,实现平方-乘以及欧几里德算法,产生并得到最终解.基于分子生物学的实验表明,该算法是可行和有效的. How to factor big integers effectively is a difficult problem in mathematics. A DNA algorithm for factoring integers based on bio-molecular technology is proposed. The key of the algorithm is that the Pollard p-1 method is used. The problem is solved by tube operation that performs addition, subtraction, multiplication and division to accomplish the square-and-multiply algorithm and the Euclidean algorithm, and then the result is obtained. On the basis of the experiment method of bio-molecular, it can be found that the algorithm is an effective one. Finally, the advantages and disadvantages of the algorithm are pointed out.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第z1期67-71,共5页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60603053,60274026,60373089) 教育部重点基金项目(05128)
关键词 DNA计算 并行进化算法 因子分解 Pollard p-1方法 DNA computing parallel evolutionary algorithm factoring integers problem Pollard p-1 method
  • 相关文献

参考文献14

  • 1许进,黄布毅.DNA计算机:原理、进展及难点(Ⅱ)计算机“数据库”的形成——DNA分子的合成问题[J].计算机学报,2005,28(10):1583-1591. 被引量:13
  • 2李人厚,余文.关于DNA计算的基本原理与探讨[J].计算机学报,2001,24(9):972-978. 被引量:21
  • 3[3]L Adleman.Molecular computation of solutions to combinatorial problems.Science,1994,266(5187):1021-1024
  • 4[4]D Boneh,C Dunworth,R Lipton.Breaking DES using a molecular computer.Princeton University,Tech Rep:CS2TR2489295,1995
  • 5[5]R S Braich,N Chelyapov,C Johnson.Solution of a 20-variable 3-SATproblem on a DNA computer.Science,2002,296(5567):499-502
  • 6[6]W L Chang,M Guo.Molecular solutions for the subset-sum problem on DNA-based supercomputing.BioSystems 2004,73(2):117-130
  • 7董亚非,谭刚军,张社民.基于粘贴系统求解TSP问题[J].系统仿真学报,2005,17(6):1299-1302. 被引量:5
  • 8[8]Weng-Long Chang,Minyi Guo,Michael Shan-Hui Ho.Fast parallel molecular algorithms for DNA-based computation:Factoring Integers.IEEE Trans on Nanobioscience,2005,6(2):149-163
  • 9[9]Douglas R Stinson.Cryptography Theory and Practice.Beijing:Publishing House of Electronics Industry,2003.155-156
  • 10[10]Michael Ho.Fast parallel molecular solutions for DNA-based supercomputing.BioSystems,2005,80(3):233-250

二级参考文献63

  • 1李肯立,李庆华,戴光明,周炎涛.背包问题的一种自适应算法[J].计算机研究与发展,2004,41(7):1292-1297. 被引量:15
  • 2Ken-LiLi,Ren-FaLi,Qing-HuaLi.Optimal Parallel Algorithm for the Knapsack Problem Without Memory Conflicts[J].Journal of Computer Science & Technology,2004,19(6):760-768. 被引量:11
  • 3L Adleman. Molecular Computation of Solution to Combinatorial problems [J] .Science, 1994,206 (11):1021- 1024.
  • 4J A Bondy, U S R Murty. Graph theory with application, the Macmillan press LTD [M]. London:Basingtoke and New York, 1976.
  • 5A Gibbons. Algorithmic graph Theory, Cambridge University dress [M]. London: Cambridge, 1985.
  • 6Richard J Lipton. DNA Solution of Computation Problems [ J ]. Science, 1995,268(4) :542 - 545.
  • 7Qinghua Liu, et al. DNA Computing on Surface [ J ]. Nature,. 2000,403(13) : 175 - 179.
  • 8Q Ouyang, et al. Solution of the Maximal Clique Problem [J]. Science,1997,278(17) :446 - 449.
  • 9T Head, et al. Computing with DNA by Operating on Plasmids [ J ].Biosystem, 2000,57: 87 - 93.
  • 10D Boneh, et al. On the Computation Power of DNA [R]. USA: Prinecton University, 1995.

共引文献73

同被引文献27

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部