期刊文献+

Deep Web集成中数据模式映射失效检测方法研究 被引量:2

Research on Detecting Broken Mappings for Deep Web Integration
下载PDF
导出
摘要 查询接口集成是Deep Web数据集成的关键,在动态环境下,Web数据源的变化会引起数据模式映射的失效,使得查询接口集成维护难度增加,因此数据模式映射失效检测是Deep Web数据集成研究中的热点问题.针对目前数据模式映射失效检测方法的局限,在模糊聚集算子的研究基础上,提出一种适用于数据模式映射失效检测的结果融合算法.通过实验对比测试,并对映射失效检测方法的性能和效率进行了分析和实验,结果证明了提出的方法对于失效模型的检测是有效的. The deep Web integration system employs a set of semantic mappings between the mediated schema and the schemas of Web data sources. In this dynamic environment, sources often undergo changes that invalidate the mappings. Such continuous monitoring is extremely labor intensive, and poses a key bottleneck to the widespread deployment of Web data integration systems in practice. The paper describes DBMFR (Detecting Broken Mappings Based on Fuzzy Reasoning) an automatic solution to detecting broken mappings. Fuzzy aggregation operators are leveraged to calculate the score, which implies whether the mapping is broken. The paper provides a new fuzzy reasoning algorithm based on fuzzy aggregation operators. Experiments over real-world sources demonstrate the effectiveness of our fuzzy-based approach over existing solutions, as well as the utility of our improvements.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第z1期222-227,共6页 Journal of Computer Research and Development
基金 国家"八六三"高技术研究发展计划基金项目(2004AA112020 2005AA112030) 国家"九七三"重点基础研究发展规划基金项目(2005CB321804)
关键词 DEEP WEB集成 模式映射 模糊聚集算子 Deep Web mapping maintenance fuzzy aggregation operators
  • 相关文献

参考文献15

  • 1[1]K C Chang,B He,C Li,et al.Structured databases on the Web:Observations and implications.SIGMOD Record,2004,33(3):61-70
  • 2[2]B He,K C Chang.Statistical schema matching across Web query interfaces.The 2003 ACM SIGMOD Int'l Conf on Management of Data,San Diego,2003
  • 3[3]E Dragut,W Wu,A P Sistla,et al.Merging source query interfaces on Web databases.The 22nd Int'l Conf on Data Engineering (ICDE'06),Washington,2006
  • 4[4]W Cohen.Some practical observations on integration of Web information.ACM SIGMOD Workshop on the Web and Databases (WebDB'99),Philadelphia,USA,1999
  • 5[5]N Kushmerick.Wrapper verification.World Wide Web Journal,2000,3(2):79-94
  • 6[6]L Seligman,A Rosenthal,P Lehner,et al.Data integration:Where does the time go? IEEE Data Engineering Bulletin,2002,25(3):3-10
  • 7[7]K Lerman,S Minton,C Knoblock.Wrapper maintenance:A machine learning approach.Journal of Artificial Intelligence Research,2002,18(2):149-181
  • 8[8]R McCann,B Alshebli,Q Le,et al.Mapping maintenance for data integration systems.The 31st Int'l Conf on Very Large Data Bases,Trondheim,Norway,2005
  • 9[9]J Domingo,V Torra.Median-based aggregation operators for prototype construction in ordinal scales.International Journal of Intelligent Systems,2003,18(6):633-655
  • 10[10]R R Yager.On ordered weighted averaging aggregation operators in multicriteria decision making.IEEE Trans on Systems,Man and Cybernetics,1988,18(1):183-190

二级参考文献2

  • 1Dubois D,Handbook of Logic in Artificial Intelligenceand LogicProgramming3,1994年,439页
  • 2Dubois D,Fuzzy Sets and Systems,1991年,40卷,203页

共引文献3

同被引文献28

  • 1Khare R, An Y, Song Ⅱ-Yeol. Understanding Deep Web search interfaces: A survey [J]. ACM SIGMOD Record, 2010, 39(1): 33-40.
  • 2He Bin, Chang Kevin Chen-Chuan. A holistic paradigm for large scale schema matching [J]. ACM SIGMOD Record, 2004, 33(4): 20-25.
  • 3He Bin, Chang Kevin Chen-Chuan. Automatic complex schema matching across Web query interfaces: A correlation mining approach [J]. ACM Trans on Database Systems, 2006, 31(1): 346-395.
  • 4He Bin, Chang Kevin Chen-Chuan, Han Jiawei. Discovering complex matchings across Web query interfaces: a correlation mining approach [C]//Proc of ACM SIGMOD Int Conf on Knowledge Discovery and Data Mining(KDD). New York: ACM, 2004: 148-157.
  • 5Liu Jie, Wang Nianbin, Liu Fujiang, et al. Complex synonymous matchings based on correlation mining [C] // Proc of the Interoperability for Enterprise Software and Applications China ( IESA ). Washington, DC: IEEE Computer Society, 2009: 175-179.
  • 6He Zhongtian, Hong Jun, Bell David A. Schema matching across query interfaces on the Deep Web [G] //LNCS 5071: Proc of the 25th British National Conf on Databases (BNCOD). Berlin: Springer, 2008:51-62.
  • 7He Zhongtian, Hong Jun, Bell David A. A prioritized collective selection strategy for schema matching across query interfaces [G] //LNCS 3588: Proc of the 26th British National Conf on Databases (BNCOD). Berlin: Springer, 2009:21-32.
  • 8Liu Tantan, Wang Fan, Agrawal G. Instance discovery and schema matching with applications to biological Deep Web data integration [C] //Proc of the IEEE Int Conf on Bioinformatics and Bioengineering(BIBE). Washington, DC IEEE Computer Society, 2010: 304-305.
  • 9Fu Yuchen, Liu Quan, Xu Yunlong, et al. Correlated clustering frame a holistic method of Deep Web schema matching based on data mining[C] //Proc of WRI World Congress on Computer Science and Information Engineering. Washington, DC: IEEE Computer Society, 2009:528-533.
  • 10Wang Rui, Wang Nianbin. Ontology-based Deep Web data interface schemas integration method [C] //Proe of 2nd Int Conf on e-Business and Information System Security (EBISS). Washington, DC: IEEE Computer Society, 2010: 1-4.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部