期刊文献+

PS and CESS Property of Formal Triangular Matrix Rings

形式三角矩阵环的PS性质和CESS性质(英文)
下载PDF
导出
摘要 Let R be a ring. Recall that a right R-module M (RR, resp.) is said to be a PS-module (PS-ring, resp.) if it has projective socle. M is called a CESS-module if every complement summand in M with essential socle is a direct summand of M. We show that the formal triangular matrix ring T = A 0M B is a PS-ring if and only if A is a PS-ring, MA and lB(M) = {b ∈ B | bm = 0,m ∈ M} are PS-modules and Soc(lB(M)) M = 0. Using the alternative of right T-module as triple (X,Y )f with X ∈ Mod-A, Y ∈ Mod-B and f : YM →... Let R be a ring. Recall that a right R-module M (RR, resp.) is said to be a PS-module (PS-ring, resp.) if it has projective socle. M is called a CESS-module if every complement summand in M with essential socle is a direct summand of M. We show that the formal triangular matrix ring T = A 0M B is a PS-ring if and only if A is a PS-ring, MA and lB(M) = {b ∈ B | bm = 0,m∈ M} are PS-modules and Soc(lB(M)) M = 0. Using the alternative of right T-module as triple (X,Y )f with X ∈ Mod-A, Y ∈ Mod-B and f : YM→ X in Mod-A, we show that if TT is a CESS-module, then AA and MA are CESS-modules.
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2008年第4期981-986,共6页 数学研究与评论(英文版)
基金 the National Natural Science Foundation of China (No.10171082) TRAPOYT (No.200280) Yong Teachers Research Foundation of NWNU (No.NWNU-QN-07-36)
关键词 formal triangular matrix ring PS-ring CESS-module. formal triangular matrix ring PS-ring CESS-module.
  • 相关文献

参考文献8

  • 1GOODEARL K R.Ring Theory[]..1976
  • 2CELIK C,,HARMANS A,SMITH P F.A generalization of CS-modules[].Communications in Algebra.1995
  • 3GOODEARL K R.Surjective endomorphisms of finitely generated modules[].Communications in Algebra.1987
  • 4NICHOLSON W K,WATTERS J F.Rings with projective socle[].Proceedings of the American Mathematical Society.1988
  • 5Haghany A,Varadarajan K.Study of modules over formal triangular matrix rings[].Journal of Pure and Applied Algebra.2000
  • 6HAGHANY A,VARADARAJAN K.Study of Formal Triangular Matrix Rings[].Communications in Algebra.1999
  • 7Green E.L.On the representation theory of rings in matrix form[].Pacific Journal of Mathematics.1982
  • 8Herstein,I. N.A counter example in noetherian rings[].Proc Nat Acad Sc (USA).1965

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部