期刊文献+

NOD小鼠自然状态下CD4^+CD25^+T细胞的动态变化及意义 被引量:2

Dynamic change of CD4^+CD25^+ T cells in non-obese diabetic mice under natural condition
原文传递
导出
摘要 研究自发的1型糖尿病雌鼠模型(NOD)在自然状态下发生1型糖尿病过程中CD4+CD25+T细胞的动态变化,旨在初步探讨调节性T细胞参与1型糖尿病发病的可能机制。采用雌性NOD小鼠作动物模型,每2周尾静脉采血1次,采用三色流式细胞术测定NOD小鼠外周血中CD4+CD25+T细胞(CD3+CD4+CD25+)的百分率。在32周时,对比发生糖尿病和未发生糖尿病NOD小鼠不同脏器中的CD4+CD25+T细胞阳性率。HE法检测胰岛炎。结果显示:(1)自第6周起NOD小鼠CD4+CD25+T细胞百分率逐渐降低。发生糖尿病NOD小鼠CD4+CD25+T细胞比率低于未发病NOD小鼠对照组(外周血分别为0.94%±0.21%、1.62%±0.23%,P=0.01;脾脏2.09%±0.14%、2.77%±0.36%,P=0.019),提示糖尿病NOD小鼠外周血中存在异常比例的CD4+CD25+T细胞;(2)32周龄糖尿病NOD小鼠与未发病NOD小鼠的CD4+CD25+T细胞抑制功能减低,与阳性对照组有显著性差异;(3)HE染色结果示糖尿病NOD小鼠胰岛结构完全破坏,胰岛炎程度较未发病NOD小鼠严重。该结果提示NOD小鼠发生糖尿病时免疫功能紊乱与CD4+CD25+T细胞参与调节及T细胞亚群变化相关,糖尿病的发生受致病性T细胞和调节性T细胞的调节。 To investigate the dynamic change of CD4+CD25+ T cells in non-obese diabetic mice(NOD) to develop type 1 diabetes mellitus and explore the possible mechanism of the regulatory T cells participating the pathogenesis of diabetes,the percentage of CD3+CD4+CD25+ T cells in peripheral blood of female NOD mice was determined every 2 weeks with TC-CD3,FITC-CD4 and PE-CD25 antibodies staining and analyzed by flow cytometry.Spleen cell suspensions were enriched for CD4+ T cells by panning and were sorted on FACS int...
出处 《现代免疫学》 CAS CSCD 北大核心 2008年第6期479-482,共4页 Current Immunology
基金 江苏省政府医学重点学科项目基金资助项目(苏卫科教2001-34)
关键词 CD4+CD25+T细胞 1型糖尿病 NOD小鼠 CD4+CD25+ T cells type 1 diabetes NOD mice
  • 相关文献

参考文献2

二级参考文献31

  • 1杨滨燕,朱兆玲,吴长有.CD4^+T细胞的分裂与表面标志和细胞因子产生相关性的探讨[J].中国免疫学杂志,2004,20(9):587-590. 被引量:16
  • 2Bruder D, Probst-Kepper M, Westendorf A, et al. Neuropiliin-1: a surface marker of regulatory T cells[J]. Eur J Immunol, 2004,34(3):623-630.
  • 3Fontenot J, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4^+ CD25^+ regulatory T cells[J]. Nat Immunol, 2003,4(4):330-336.
  • 4Nakamura K, Kitani A, Strober W, Cell contact-dependent immunosuppression by CD4^+ CD25^+ regulatory T cells is medialed by cell surface bound transforming growth factor[J]. J Exp Med, 2001,194(5) :629-644.
  • 5Maloy KJ, Salaun L, Cahill R, et al. CD4^+ CD25^+ TR cells suppress innate immune pathology through cytokine-dependent mechanisms[J]. J Exp Med, 2003,197(1):111-119.
  • 6von Boehmer H. Mechanisms of suppression by suppressor T cells[J]. Nat Immunol, 2005,6(4):338-344.
  • 7Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4^+ CD25^+ T cells mediated suppression by dendritic cells[J]. Science, 2003,299(5609):1033-1036.
  • 8Paust S, Lu L, McCarty N, et al. Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease[J]. Proc Natl Acad Sci USA, 2004,101(28):10398-10403.
  • 9Mellor AL, Munn DH. IDO expression by dendritic cells:tolerance and tryptophan eatabolism[J]. Nat Rev Immunol,2004,4 (10) : 762-774.
  • 10Shimizu J, Yamazaki S, Takahashi T, et al. Stimulation of CD25( + )CD4( + ) regulatory T cells through GITR breaks immunological self-tolerance[J]. Nat Immunol, 2002,3 (2) :135-142.

共引文献20

同被引文献14

  • 1Santamaria P. The long and winding road to understanding and conquering type 1 diabetes[J]. Immunity, 2010, 32(4): 437-448.
  • 2Bluestone JA, Tang Oj Sedwick CE. T regulatory cells in autoimmune diabetes: past challenges, future prospects[J]. J Clin Immunol, 2008, 28(6): 677-684.
  • 3Feuerer M, Shen Y, Littman DR, et al. How punctual ablation of regulatory T cells unleashes an autoimmune lesion within the pancreatic islets [J]. Immunity, 2009, 31 (4): 654-664.
  • 4Cnop M, Welsh N, Jonas JC, et al. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities[J]. Diabetes, 200S, S4(Suppl 2): S97-S107.
  • 5Brusko TM, Wasserfall CH, Clare-Salzler MJ, et al. Functional defects and the influence of age on the frequency of CD4^+CD25^+T cells in type 1 diabetes [J]. Diabetes, 2005, 54(5): 1407-1414.
  • 6Tang Oa Adams JY, Penaranda C, et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction[J]. Immunity, 2008, 28(5): 687-697.
  • 7Zhou X, Bailey-Bucktrout SL, Jeker LT, et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo[J]. Nat Immunol, 2009, 10(9): 1000- 1007.
  • 8Zhou X, Bailey-Bucktrout S, Jeker LT, et al. Plasticity of CD4(+) FoxP3(+)T cells[J]. Curr Opin Immunol, 2009, 21(3):281-285.
  • 9Delgoffe GM, Kole TPj Zheng Y, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment[J]. Immunity, 2009, 30(6): 832-844.
  • 10Liu G, Yang K, Burns S, et al. The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells[J]. Nat Immunol, 2010, 11 ( 11 ): 1047-1056.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部